


A bug or malware?



A bug or malware?

• Context: Found in a CVS commit to the Linux Kernel source

Hint: This never executes…

"=" vs. "==“ is a subtle yet important difference!
Would grant root privilege to any user that knew
how to trigger this condition.



Malware: Linux Backdoor Attempt (2003)

• https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-
attempt-of-2003/

Hint: This never executes…

"=" vs. "==“ is a subtle yet important difference!
Would grant root privilege to any user that knew
how to trigger this condition.

https://freedom-to-tinker.com/blog/felten/the-linux-backdoor-attempt-of-2003/


How do we produce a call graph?



Sound and Precise

• We say a call graph is “sound” if it has all the edges that are possible 
at runtime. 

• We say a call graph is “precise” if it does not have edges that do not 
occur at runtime. 

• It’s easy to be sound, but its hard to be sound and precise.



Idea 1: Reachability Analysis (RA)

• For Every Method m
• For Every Callsite

• Add an edge (if one does not already exist) from m to any method with the same name as the 
method called in the callsite

• Refinement: Match methods with the same name AND the same return 
types and parameter types/counts

• Sound but not precise
• We end up with a call graph that always has a call edge that could happen, but we 

have a lot of edges that also can not happen.
• WHY? -> Static Dispatch vs. Dynamic Dispatch

• Dynamic Dispatches are a problem



Static Dispatch vs. Dynamic Dispatch

• Static Dispatch
• Resolvable at compile time
• Includes calls to Constructors and methods marked “static” (ex: main method)
• Static methods do not require an object instance, they can be called directly

Examples

Animal a = new Dog(); // static dispatch to new Dog()
Animal.runSimulation(a); // static dispatch to runSimulation()

8



Static Dispatch vs. Dynamic Dispatch

• Dynamic Dispatch 
• Resolvable at runtime
• Includes calls to member methods (virtual methods)
• Requires an object instance, they can be called directly
• Very common in OO languages such as Java
• Can be simulated with function pointers

Examples

Animal a = new Dog(); // static dispatch to new Dog()
a.toString(); // dynamic dispatch to toString
a.getName(); // dynamic dispatch to dog’s getName method

9



Terminology (slight digression)

Animal a = new Dog(); // static dispatch to new Dog()
a.toString(); // dynamic dispatch to toString

10

Callsite of String::toString() method (could be overridden in 
Dog of inherited from Animal or Object)

Receiver object

Declared type (Animal)

Runtime type (Dog)



Idea 2: Class Hierarchy Analysis (CHA)

• Compute the type hierarchy
• For each callsite, if the dispatch is static add the edge like normal, 

otherwise:
• Perform RA with the added constraint that the target method must be in either

• 1) The direct lineage from Object to the receiving object’s declared type (in the case that the 
target method is inherited)

• 2) The subtype hierarchy of the receiving object’s declared type

• Sound and more precise than RA 
• We end up with a call graph that always has a call edge that could happen, and we 

have less edges that can not happen.
• We can still do better…in terms of precision
• Checkout the case of: Object o = …; o.toString();

• We have to add an edge to every toString() method!



Idea 3: Rapid Type Analysis (RTA)

• Summary: 
• Look at the allocation types that were made
• We can’t have a call to a method in a type that we never had an instance of (in the case of 

dynamic dispatches)

• Potential Implementation 
• Start with CHA
• Examine all new allocation types
• Remove call edges from call graph that point to methods in unallocated types

• Described in detail in “Fast Static Analysis of C++ Virtual Function Calls – IBM”, 
1996.

• More precise than CHA
• Still sound

http://researcher.ibm.com/files/us-bacon/Bacon96Fast.pdf


Idea 4: Rapid Type Analysis Improvements

• Method Type Analysis (MTA)
• Idea: Restrict parent method types to types that could be passed through the 

method’s parameters
• Idea: Consider the statically typed return type of the dynamic dispatch callsite

• Field Type Analysis (FTA)
• Idea: Consider that a method could write to a global variable, so any allocations 

reachable by a method are also reachable by a method that reads the same global 
variable

• Hybrid Type Analysis (XTA)
• Combines MTA and FTA
• Precision? More precise than RTA
• Sound? No…Exceptions are not considered

• Paper: Scalable Propagation-Based Call Graph Construction Algorithms

http://web.cs.ucla.edu/%7Epalsberg/paper/oopsla00.pdf


Idea 5: Variable Type Analysis

• Idea: Track the allocation types to variables the callsites are made on
• This is a points-to analysis

• Implementation 
• For each new allocation, assign an ID to the new allocation site add each 

allocation site to the worklist
• While the worklist is not empty

• Remove an item from the worklist and propagate its point-to set (set of allocation ids) to 
every data flow successor (every assignment of the variable to another variable), adding 
each new variable to the worklist

• If a callsite is made on the variable, look up the type of the allocation(s) and add a call 
edge (if parameters are reachable as a result, add the parameters to the worklist)



Call Graph Construction Algorithm Overview

O(n^3) for 
Andersen-style

(points-to analysis)


	Slide Number 1
	Slide Number 2
	A bug or malware?
	Malware: Linux Backdoor Attempt (2003)
	How do we produce a call graph?
	Sound and Precise
	Idea 1: Reachability Analysis (RA)
	Static Dispatch vs. Dynamic Dispatch
	Static Dispatch vs. Dynamic Dispatch
	Terminology (slight digression)
	Idea 2: Class Hierarchy Analysis (CHA)
	Idea 3: Rapid Type Analysis (RTA)
	Idea 4: Rapid Type Analysis Improvements
	Idea 5: Variable Type Analysis
	Call Graph Construction Algorithm Overview

