public class ClassActivityl {

/**
* Prints Student Name, Group ID

*/
String studentName = args[0]

.toUpperCase()
.replaceAll("\\s+","
.toCharArray();
int grouplD = 0;
if(characters.length >= 3) {
int maxGroups = 5;
// Note that 'A' == 65,
int asciiSumFirst3Chars

}
System.out.println("Student:

+ nm

.
3

char[] characters = studentName

")

|A|

= (int) characters[@]
+ (int) characters[1]
+ (int) characters[2];
groupID = asciiSumFirst3Chars % maxGroups;

, Group: " + (groupID+l));

* @param args[@] 1s Student first and last name
* Example: java ClassActivityl "Ben Holland"

public static void main(String[] args) {

= 0x41

+ studentName

Announcements

* Open Help Hours

e Wednesdays/Fridays 1:10-2:00pm in Gilman 1810
 One addition help hour TBD

e Using Piazza
e Use it! Use your peers. Help your peers.
e Generally will not be answering requests for help in email

e Reminder of course theme
e Emphasis is on critical thinking!
e Tutorials to complete assignments do not exist
e Experiment, learn, and document your thinking (including failures)!
e Assignments must be professionally typed!

Group Activity 1

e Assignment 1
e https://github.com/SE421/assignmentl/blob/master/assisnmentl.pdf
e Problem 1: 15 minutes
e Problem 2: 15 minutes
e Problem 3: 20 minutes

* Group Participation
* Nominate group representative

e Complete attendance sheet online (one per group)

e https://goo.gl/forms/m7WLXnH49denNojC3
e At the end of the activity group representative should summarize group thinking
e System.out.print(“Presenting Group: ” + new Random().nextIint(maxGroups) + 1),

https://github.com/SE421/assignment1/blob/master/assignment1.pdf
https://goo.gl/forms/m7WLXnH49denNojC3

Exercise (2014): Refactoring CVE-2012-4681

e “Allows remote attackers to execute arbitrary code via a crafted
applet that bypasses SecurityManager restrictions...”

* CVE Created August 27th 2012 (~2 years old...)

Sample Notes Score (2014’s positive detections)
Original Sample http://pastie.org/4594319 30/55

Technique A Changed Class/Method names 28/55

Techniques Aand B Obfuscate strings 16/55

Techniques A-C Change Control Flow 16/55

Techniques A-D Reflective invocations (on sensitive APIs) 3/55

Techniques A-E Simple XOR Packer 0/55

Exercise (2014): Refactoring CVE-2012-4681

Three main approaches that were demonstrated in class

1) Refactoring strings that appear in bytecode of compiled classes

2) Use of Java reflection to indirectly invoke functions
- https://gist.github.com/benjholla/1a219f30397c2608065f

3) Use of Java class loaders to load new runtime class definitions

https://gist.github.com/benjholla/1a219f30397c2608065f

Problem 1 (15 minutes)

b) What are YARA rules? How can we develop YARA rules to detect
known malware?

c) What evasion techniques have you tried / thought of?
e What were the preliminary results?
 What resources have you found in your research so far?

Problem 2 (15 minutes)

* Discuss Reflections on Trusting Trust Paper
e What is the described attack?
e Why is it interesting?
e How could we detect it?

Problem 3 (20 minutes)

 How to write a quine program?

* How to write a quine-relay program?

	Slide Number 1
	Announcements
	Group Activity 1
	Exercise (2014): Refactoring CVE-2012-4681
	Exercise (2014): Refactoring CVE-2012-4681
	Problem 1 (15 minutes)
	Problem 2 (15 minutes)
	Problem 3 (20 minutes)

