import java.util.Random;
public class Puzzle5 {
private static Random rnd = new Random();

public static void main(String[] args) {
StringBuffer word = null;

*; switch(rnd.nextInt(2)) {
3l case 1: word = new StringBuffer('R");
v case 2: word = new StringBuffer('T");
L default: word = new StringBuffer(']');
e }
' word.append(“est");
‘\‘ System.out.println(String.format("It's time for a %s.", word)); &

public class Puzzle6 {

public static void main(String[] args) {
System.out.println(getResult());

¥
private static boolean getResult() {
return true;
} finally {

return false;

Ice Breaker Exercise: EIL5 “Programming”

e Explain It Like I'm Five (EIL5): How do computer programs work?

e Can your explanation intuitively address:
e Complexity of software
 Programming bugs
e Security issues

[Lamp doesn't work]

Lamp
plugged in?

>

Plug in lamp

Bulb
burned out?

[>

Replace bulb

Repair lamp

Presenter
Presentation Notes
Computers understand and follow very simple instructions. They do not know right from wrong, they only follow instructions exactly as they see them. Programs are made of these simple instructions and cab be thought of like flowcharts. Flowcharts take some data (YES/NO) to make decisions. If/Then relationships (Did you eat breakfast today? -> YES/NO) let us control decisions based on the answers. We can even loop (Did you eat breakfast today -> No? -> Go back to the start.). We can make lots of flowcharts and combine them to make really complicated programs. Even though the idea of flowcharts is very simple, a big flow chart can be very confusing to understand right? What if you make a mistake in the flowchart? How do you find the mistake? Could someone think of bad answers that cause your flowchart to give a wrong answer? What if I gave some inputs that cause you to go in a loop forever in your flowchart and never give an answer (example: I say I never eat breakfast)?

Control Flow Graph (CFG)

* A control flow graph (CFG) is a graph representation that captures the
paths that might be traversed through a program during its execution,
(i.e. the orderings that the program’s statements may be executed in
at runtime).

e Reading: Frances E. Allen. 1970. Control flow analysis. In Proceedings
of a symposium on Compiler optimization. ACM, New York, NY, USA, 1-
19.

Control Flow Graph (CFG)

=& Puzzles =& Puzzles
E E? PUEE'EE [=] &1 (default package)
56 Puzzis [=] 82 (default package)
[=| 8% (default package) — s =@ Puzzle3

[=] @ Puzzled "

1
default
if (b == 0x90)
System.out print("Found: 0x90 NCOP byte");

for update

Counting Program Paths

* How many paths are there for n nested branches?

falsetrue

false

if(condition_1){
if(condition_2){
if(condition_3){

if(condition_n){
// conditions 1 through n
// must all be true to reach here

}
}
}
}

Presenter
Presentation Notes
Each condition controls whether or not the next condition executes. If any n condition are false, then execution jumps to the block after condition 1, which gives us n paths. There is a single path when all conditions are true that leads to the execution of the code guarded by the nth condition. That gives us n+1 paths for n nested branches.

For n=2, there are 3 paths. C1=FALSE/C2=FALSE, C1=TRUE/C2=FALSE, C1=TRUE/C2=TRUE

What if we add a constraint that condition 1 equals condition 2? Then some of the paths are infeasible. Either condition 1 and condition 2 are true in which case the two false paths are not followed or the conditions are false in which case the true path is not followed. The number of feasible paths is less than or equal to the total number of paths in the program. In the worst case we have to consider that all paths are feasible.

Counting Program Paths

* How many paths are there for n non-nested branches?

if(condition_1){
// code block 1

}

if(condition_2){
// code block 2

}

if(condition_3){
// code block 3

}

false true

if(condition_n){
// code block n
}

Presenter
Presentation Notes
For non-nested branches, each branch is independent of the other. Condition 1 does not influence whether or not condition 2 is executed.

For n=2, there are 4 paths. C1=FALSE/C2=FALSE, C1=TRUE/C2=FALSE, C1=FALSE/C2=TRUE, C2=FALSE/C2=FALSE

Each branch offers two possibilities. For n=3 there are 2*2*2 paths. For n non-nested branches there are 2n paths.

In the worst case, the number of paths in software is exponential!

This is sometimes called the path explosion problem. If we were to count all paths in the Linux kernel there are more paths than there are stars in the galaxy. With the constant growth of software, the computational demands to analyze programs continues to grow.

Considering Loops

 Programs may have loops
e How many paths does this program have?
e Can we say if this program halts?

while(condition_1){
if(condition_2){
break;
}
}

Presenter
Presentation Notes
The presence of a back edge indicates there is a loop in the program. In this code condition 1 is a loop header.

If we are going to count paths here we have to consider whether or not we want to treat the path C1  C2  C1 as being different than the path C1  C2  C1  C2  C1. We could count this as one path or an infinite number of paths (looping forever).

Without loops our programs would be very limited. Imagine a program with n instructions, where n is some finite number. By the pigeon hole principle, a program with n instructions must complete in n or less steps (running n+1 steps means we must have revisited some instruction). Since CPUs run incredibly fast in modern processors, this would imply that most programs would terminate very quickly unless the size of the program was enormous. Loops help to reduce the size of programs by repeating common tasks. In fact sometimes we want to do something forever or until the program is terminated by the user such as listen for web connections on a webserver until the webserver is shutdown, which we cannot do without loops. It is common knowledge among experienced developers that the majority of CPU time spent inside a program is spent inside a program’s loops.

For this program, if condition 1 is true and condition 2 is false this program loops forever. We can say that this program halts (does not loop forever) if condition 1 is false or if condition 2 is true, but can we answer this question for any arbitrary program? That is, could we write a program that answers yes/no whether or not another program will halt on some input?

The Halting Problem

Suppose, we could construct: program M
H(M, x) := if M halts on x then return true else return false

Then we could construct:
G(M, x) = if G(M, x) is false then return true else loop forever

But if we then pass G to itself, that is G(G,G), we get a
contradiction between what G does and what H says that G
does. If H says that G halts, then G does not halt. If H says
that G does not halt, then it does halt.

H cannot exist.

program M

input x

yes
(halt)

Presenter
Presentation Notes
Could we write a program that answers yes/no whether or not another program will halt on some input? Surprisingly, no we cannot. While we can say that some programs terminate and some do not, we cannot answer this question for all programs. This is computer science’s first and most fundamental theorem. There cannot exist an algorithm that decides whether any given program ever terminates. The halting theorem was proven in both Alonzo Church’s and Alan Turing’s papers in 1936.

The proof goes like this. Suppose we could construct a program H that takes another program M and some input x that M will run on and decides true or false whether or not M halts on x. If H existed, then we could could simply construct a program G that runs H with M and x and loops forever if H returns yes and halts otherwise. If we feed G to itself, then there is a contradiction between what G does and what H says that G does. If H says that G halts, then G does not halt. If H says that G does not halt, then it does halt. So H cannot exist.

It turns out that the halting problem is undecidable. In fact many questions about programs are undecidable. For example a points-to analysis, an analysis that maps variables to the memory the variable is pointing to, has been shown to reduce to the halting problem. Even the slightly easier, alias analysis (answers whether aliases reference the same location in memory) has been reduced to the halting problem. In fact Rice’s theorem states that all non-trivial, semantic properties of programs are undecidable. As a result there are fundamental limits on what a program analysis is capable of answering.

Group Formation

e Countoff 1to 4

Eclipse Plugin Development + Atlas

e Setting Up Eclipse with Atlas
* |Install: Atlas (all plugins), Plugin Development Tools

e Debug As = Eclipse Application
e Xinu Project (included with Atlas)
 Atlas Shell (add plugin project to dependencies)

DFS Enumeration Strategy

Push A (root) on stack.

Stack: [A]
History:
Paths:

DFS Enumeration Strategy

Pop A onto history. A is not a leaf so push C,B.

Stack: [C, B]
History: [A]
Paths:

DFS Enumeration Strategy

Pop B onto history. B is a leaf so save path and trim history.

Stack: [C]
History: [A, B]
Paths: [A, B]

DFS Enumeration Strategy

Pop C onto history. Cis not a leaf so push E,D.

Stack: [E, D]
History: [A, C]
Paths: [A, B]

DFS Enumeration Strategy

Pop D onto history. D is a leaf so save path and trim history.

Stack: [E]
History: [A, C, B]
Paths: [A, B], [A, C, D]

DFS Enumeration Strategy

Pop E onto history. E is a leaf so save path and trim history.

Stack: []
History: [A, C, E]
Paths: [A, B], [A, C, D], [A, C, E]

DFS Enumeration Strategy

Stack is empty. Paths are enumerated.

Stack: []
History: [A, C]
Paths: [A, B], [A, C, D], [A, C, E]

Problem 2 (remaining class time)

e Discuss path counting strategy
 Why do we need a DAG? What’s the implications of using a DAG?
 What is the complexity of the algorithm with respect to the DAG?

e Explore support code
e CFGPrinter.java Example

e Group Coding for problem 2

	Slide Number 1
	Slide Number 2
	Ice Breaker Exercise: EIL5 “Programming”
	Control Flow Graph (CFG)
	Control Flow Graph (CFG)
	Counting Program Paths
	Counting Program Paths
	Considering Loops
	The Halting Problem
	Group Formation
	Eclipse Plugin Development + Atlas
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	DFS Enumeration Strategy
	Problem 2 (remaining class time)

