

How do we build a static analysis tool?

2-way Source Correspondence

Program Declarations, Control Flow, and Data Flow

Queryable Graph Database

Lexical Analysis

• A program is data
• The first step is to recognize the key “tokens” and discard irrelevant

information such as whitespace

Lexical Analysis (Example Lexer Rules)

Parsing (Parser Grammar)

• A grammar consisting of a set of productions is used describe the
symbols (elements) in the language

Parsing (Parse Tree)

• The parser matches the token
stream against the production
rules.

• If each symbol is connected to
the symbol from which it was
derived, a parse tree is formed.

Abstract Syntax Tree (AST)

It is feasible to do significant analysis on a parse tree, and certain types of
stylistic checks are best performed on a parse tree because it contains the
most direct representation of the code just as the programmer wrote it.
However, performing complex analysis on a parse tree can be inconvenient
for a number of reasons. The nodes in the tree are derived directly from the
grammar’s production rules, and those rules can introduce nonterminal
symbols that exist purely for the purpose of making parsing easy and non-
ambiguous, rather than for the purpose of producing an easily understood
tree; it is generally better to abstract away both the details of the grammar
and the syntactic sugar present in the program text. A data structure that
does these things is called an abstract syntax tree (AST).

- Secure Programming with Static Analysis By Brian Chess, Jacob West

Abstract Syntax Tree (AST)

ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful parser
generator for reading, processing, executing, or translating structured
text or binary files. It's widely used to build languages, tools, and
frameworks. From a grammar, ANTLR generates a parser that can build
and walk parse trees.

http://www.antlr.org

Calculator Expression Example:
• https://stackoverflow.com/a/1932664/475329

Brainf*ck Language
Character Meaning

> increment the data pointer (to point to the next cell to the right).

< decrement the data pointer (to point to the next cell to the left).

+ increment (increase by one) the byte at the data pointer.

- decrement (decrease by one) the byte at the data pointer.

. output the byte at the data pointer.

, accept one byte of input, storing its value in the byte at the data
pointer.

[

if the byte at the data pointer is zero, then instead of moving
the instruction pointer forward to the next
command, jump it forward to the command after
the matching] command.

]
if the byte at the data pointer is nonzero, then instead of moving the
instruction pointer forward to the next command, jump it back to the
command after the matching [command.

• Designed by Urban Müller in
1992 with the goal of
implementing the smallest
possible compiler.

• Compiler can be implemented
in less than 100 bytes

• Implements a Turing machine
• https://en.wikipedia.org/wiki/Brainfuck

https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Program_Counter
https://en.wikipedia.org/wiki/Branch_(computer_science)

Brainf*ck (Hello World)

++++++++[>++++[>++>+++>+++>+<<<<-]>+>+>->>+[<]<-]>>.>---
.+++++++..+++.>>.<-.<.+++.------.--------.>>+.>++.

Extra Credit Assignment

• Create a Brainf*ck static analysis tool
1. Brainfuck Lexer
2. Brainfuck Parser
3. Brainfuck AST
4. Brainfuck Control Flow Graph

• Testing
1. Interpret Brainf*ck program from AST
2. Interpret Brainf*ck program from CFG

Brainf*ck Control Flow Paths

• Nested
• Example: -[[[+]]]-

• Non-nested
• Example: -[+][+][+]-

• Observation: Even though we may not know
if a path is feasible, we always know what
the next instruction could be for this
language (at most 2 CFG successors)

A New Brainf*ck Language Feature

& (Computed GOTO) Jumps to the nth instruction where n is defined by the current cell value

• With this language addition how would you draw the CFG?
• Conservatively from the & to all nodes?
• This mixing of control and data makes program analysis hard

Liveness Analysis
Example:
1. x = 2;
2. y = 3;
3. z = 7;
4. a = x + y;
5. b = x + z;
6. a = 2 * x;
7. c = y + x + z;
8. t = a + b;
9. print(t); detected failure

What lines must we consider if the value of t printed is
incorrect?

Relevant lines:
1,3,5,6,8

Use-Definition Chains (UD Chain) is a data structure that
consists of a use, U, of a variable, and all the definitions, D,
of that variable that can reach that use without any other
intervening definitions.

A definition is alive if it has a use at a later statement in the
sequential execution of all statements.

A definition kills all previous definitions for the same
variables.

Data Flow Graph
Example:
1. x = 2;
2. y = 3;
3. z = 7;
4. a = x + y;
5. b = x + z;
6. a = 2 * x;
7. c = y + x + z;
8. t = a + b;
9. print(t); detected failure

What lines must we consider if the value of t printed is
incorrect?
• A Data Flow Graph (DFG) creates a graph of atomic

primitive, variables, and operator relationships where
each assignment represents an edge from the RHS to the
LHS of the assignment.

Relevant lines:
1,3,5,6,8

Code Transformation (before – flow insensitive):
Static Single Assignment Form

1. x = 1;
2. x = 2;
3. if(condition)
4. x = 3;
5. read(x);
6. x = 4;
7. y = x;

1 2 3 4

x

read(arg)

Resulting graph when statement ordering is not considered.

y

Code Transformation (after – flow sensitive):
Static Single Assignment Form

1. x = 1;
2. x = 2;
3. if(condition)
4. x = 3;
5. read(x);
6. x = 4;
7. y = x;

1. x1,1 = 1;
2. x2,2 = 2;
3. if(condition)
4. x3,4 = 3;
5. read(x2,2,3,4);
6. x4,6 = 4;
7. y1,7 = x4,6;

Note: <Def#,Line#>

1 2 3 4

read(arg)

x1,1 x2,2 x3,4 x4,6

y1,7

Implicit Data Flow

• Control impacts data
• Data impacts control

Points-to Analysis

• Could we answer whether or not two variables could point-to the
same value in memory?

	Slide Number 1
	How do we build a static analysis tool?
	Lexical Analysis
	Lexical Analysis (Example Lexer Rules)
	Parsing (Parser Grammar)
	Parsing (Parse Tree)
	Abstract Syntax Tree (AST)
	Abstract Syntax Tree (AST)
	ANTLR
	Brainf*ck Language
	Brainf*ck (Hello World)
	Extra Credit Assignment
	Brainf*ck Control Flow Paths
	A New Brainf*ck Language Feature
	Liveness Analysis
	Data Flow Graph
	Code Transformation (before – flow insensitive): �Static Single Assignment Form
	Code Transformation (after – flow sensitive): �Static Single Assignment Form
	Implicit Data Flow
	Points-to Analysis

