public class Puzzle9 {

public static void main(String[]
recurse();

}

private static void recurse() {

try {
recurse();

} finally {
recurse();

}



How do we build a static analysis tool?

1 public class TestClass { [=](= TestProject

36 public void AQ) { . . [F& (default packa

4 o Program Declarations, Control Flow, and Data Flow . S
5 } - [=]® TestClass  :
7e public void BQ) { D e A oF|
a9 } © call =
10 ' '
11e public void CQ) { v

12 BO; ©B

13 DO;

- } professional

16 public void DQ) {

17 GO

18 EQ;

19 } e C

28 i

21=  public void EQ) { call

24 Queryable Graph Database %D

252 public void F(Q) { Dol
26 e <€ > call \ call
ba } 2-way Source Correspondence o

295 public void G(Q{

30 i ]lec) |eE
S Uu

32
21}




Lexical Analysis

e A program is data

e The first step is to recognize the key “tokens” and discard irrelevant
information such as whitespace

if (ret) // probably true
mat[x][y] = END_VAL;

This code produces the following sequence of tokens:

TF LPAREN ID(ret) RPAREN ID(mat) LBRACKET ID(x) RBRACKET LBRACKET
ID(y) RBRACKET EQUAL ID(END_VAL) SEMI



Lexical Analysis (Example Lexer Rules)

f return IF; }

return LPAREN; }

return RPAREN; }

return LBRACKET; }

return LBRACKET; }

return EQUAL; }

return SEMI; }

/* 1gnore whitespace */ }
/* 1gnore comments */ }
return ID; }

;
(
)
[
]

/[ \t\n]+/
/N/\/.*/
/[a-zA-Z][a-zA-Z0-9]="/

L T e T e T e T e T e T e T e T s B




Parsing (Parser Grammar)

A grammar consisting of a set of productions is used describe the
symbols (elements) in the language

stmt := 1f_stmt | assign_stmt
1f_stmt := IF LPAREN expr RPAREN stmt
expr := lval

assign_stmt := lval EQUAL expr SEMI
lval = ID | arr_access

arr_access := ID arr_ index+
arr_idx := LBRACKET expr RBRACKET




Parsing (Parse Tree)

* The parser matches the token
stream against the production
rules.

* If each symbol is connected to
the symbol from which it was

derived, a parse tree is formed.

stmt

'

if stmt
.‘fffgffgfﬁ ﬁx&xahm“th
expr stmt
1521 a551gn stmt
IDEiet) / \
1val expr
arr access 1va1

N ¢

ID(mat) arr idx arr idx ID (END VAL)
v '
expr expr
v "
lval lval
; '

ID(x) ID(y)



Abstract Syntax Tree (AST)

It is feasible to do significant analysis on a parse tree, and certain types of
stylistic checks are best performed on a parse tree because it contains the
most direct representation of the code just as the programmer wrote it.
However, performing complex analysis on a parse tree can be inconvenient
for a number of reasons. The nodes in the tree are derived directly from the
grammar’s production rules, and those rules can introduce nonterminal
symbols that exist purely for the purpose of making parsing easy and non-
ambiguous, rather than for the purpose of producing an easily understood
tree; it is generally better to abstract away both the details of the grammar
and the syntactic sugar present in the program text. A data structure that
does these things is called an abstract syntax tree (AST).

- Secure Programming with Static Analysis By Brian Chess, Jacob West



Abstract Syntax Tree (AST)

if stmt

e e

NOT asslgn stmt NO OP

/\ arr (END VAL)
ID(ret) 0 / \

arr idx

/\

ID (mat)



ANTLR

ANTLR (ANother Tool for Language Recognition) is a powerful parser
generator for reading, processing, executing, or translating structured
text or binary files. It's widely used to build languages, tools, and
frameworks. From a grammar, ANTLR generates a parser that can build
and walk parse trees.

http://www.antlr.org

Calculator Expression Example:
e https://stackoverflow.com/a/1932664/475329



Brainf*ck Language

e Desighed by Urban Mdller in
1992 with the goal of
implementing the smallest
possible compiler.

 Compiler can be implemented
in less than 100 bytes

* Implements a Turing machine
* https://en.wikipedia.org/wiki/Brainfuck

Character

>

Meaning

increment the data pointer (to point to the next cell to the right).
decrement the data pointer (to point to the next cell to the left).
increment (increase by one) the byte at the data pointer.

decrement (decrease by one) the byte at the data pointer.

output the byte at the data pointer.

accept one byte of input, storing its value in the byte at the data
pointer.

if the byte at the data pointer is zero, then instead of moving
the instruction pointer forward to the next

command, jump it forward to the command after

the matching ] command.

if the byte at the data pointer is nonzero, then instead of moving the
instruction pointer forward to the next command, jump it back to the
command after the matching [ command.


https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Program_Counter
https://en.wikipedia.org/wiki/Branch_(computer_science)

Braint*ck (Hello World)

+H++++HHH[ >+ [>H S>> LKL D> >0 H[<] <] 5> >
At A OS> < < - ymmmmm e S>+,>++,



Extra Credit Assignment

* Create a Brainf*ck static analysis tool
1. Brainfuck Lexer
2. Brainfuck Parser
3. Brainfuck AST
4. Brainfuck Control Flow Graph

e Testing
1. Interpret Brainf*ck program from AST
2. Interpret Brainf*ck program from CFG




Brainf*ck Control Flow Paths .o esmma

=] hello.bf

- hello |
* Nested

e Example: -[[[+]]]-

* Non-nested / ! I\I
e Example: -[+][+][+]- A

e Observation: Even though we may not know
if a path is feasible, we always know what
the next instruction could be for this

language (at most 2 CFG successors)



A New Brainf*ck Language Feature

& (Computed GOTO) Jumps to the nt instruction where n is defined by the current cell value

e With this language addition how would you draw the CFG?
e Conservatively from the & to all nodes?
e This mixing of control and data makes program analysis hard



Liveness Analysis

Use-Definition Chains (UD Chain) is a data structure that

Example: consists of a use, U, of a variable, and all the definitions, D,
1. x=2 of that variable that can reach that use without any other
2. y=3; intervening definitions.

3. z=7;

4. a=x+y; A definition is alive if it has a use at a later statement in the
5. b=x+2z sequential execution of all statements.

6. a=2*x; _

7. Cmy4x+z; Relevant lines: A definition kills all previous definitions for the same

9. print(t); <—— detected failure

What lines must we consider if the value of t printed is
incorrect?



Data Flow Graph

Example:

1. x=2;

2. y=3;

3. z=17;

4, a=Xx+y;

5. b=x+z

6. a=2%*x; _

7. c=y4x+z Relevant lines:
8 t=a+bh: 1,3,5,6,8

9. print(t), <—— detected failure

What lines must we consider if the value of t printed is
incorrect?

e A Data Flow Graph (DFG) creates a graph of atomic
primitive, variables, and operator relationships where

[=] inty=3; =0 intz =7; (=]

—-intx =2,

&l
df(local)i dfilocal) dfflocal)
z X

df(local)i d
df{local)

I

each assignment represents an edge from the RHS to the

LHS of the assignment.

dffloc

dfflocal)

=]

al)

T a=2"%x
df(local?

¥

dfflocal)

df(ocaT

ka“"*-m /'/
[=| xl}li: a+h;

Y

print(t);
Y




Code Transformation (before — flow insensitive):
Static Single Assignment Form

1. x=1;

2. X=2;

3. if(condition)
4, x=3;

5. read(x);

7. y=X;

Resulting graph when statement ordering is not considered.



Code Transformation (after — flow sensitive):
Static Single Assignment Form

1. x=1, 1. x,=1;

2. X=2, 2. Xy,=2;

3. if(condition) - 3. if(condition)
4. x=3, 4. X34=3;

5. read(x); 5. read(x; ,,3 4);
6. x=4; 6. X46=4;

7. y=X; 7/

+ Y1,7= X460 read(arg) Q

Note: <Def#,Line#t>



Implicit Data Flow

public class DataflowLaunder {

public static void main(String[] args) {

e Control impacts data String x = "1010";
String y = launder(x);
® Data |mpaCtS ContrOI System.out.println(y + " is a laundered version of " + x);
}

public static String launder(String data){

String result = "";
for(char c : data.toCharArray()){
if(c == '0")

result += '@';
else
result += '1°';

}

return result;



Points-to Analysis

e Could we answer whether or not two variables could point-to the
same value in memory?



	Slide Number 1
	How do we build a static analysis tool?
	Lexical Analysis
	Lexical Analysis (Example Lexer Rules)
	Parsing (Parser Grammar)
	Parsing (Parse Tree)
	Abstract Syntax Tree (AST)
	Abstract Syntax Tree (AST)
	ANTLR
	Brainf*ck Language
	Brainf*ck (Hello World)
	Extra Credit Assignment
	Brainf*ck Control Flow Paths
	A New Brainf*ck Language Feature
	Liveness Analysis
	Data Flow Graph
	Code Transformation (before – flow insensitive): �Static Single Assignment Form
	Code Transformation (after – flow sensitive): �Static Single Assignment Form
	Implicit Data Flow
	Points-to Analysis

