

Counting Program Paths

• How many paths are there for n nested branches?

if(condition_1){
if(condition_2){

if(condition_3){
…
if(condition_n){

// conditions 1 through n
// must all be true to reach here

}
}

}
}

Condition 1

Condition 2

Condition n

…

false

false

false

false

true

true

true

true

Presenter
Presentation Notes
Each condition controls whether or not the next condition executes. If any n condition are false, then execution jumps to the block after condition 1, which gives us n paths. There is a single path when all conditions are true that leads to the execution of the code guarded by the nth condition. That gives us n+1 paths for n nested branches.For n=2, there are 3 paths. C1=FALSE/C2=FALSE, C1=TRUE/C2=FALSE, C1=TRUE/C2=TRUEWhat if we add a constraint that condition 1 equals condition 2? Then some of the paths are infeasible. Either condition 1 and condition 2 are true in which case the two false paths are not followed or the conditions are false in which case the true path is not followed. The number of feasible paths is less than or equal to the total number of paths in the program. In the worst case we have to consider that all paths are feasible.

Counting Program Paths

• How many paths are there for n non-nested branches?

if(condition_1){
// code block 1

}
if(condition_2){

// code block 2
}
if(condition_3){

// code block 3
}
…
if(condition_n){

// code block n
}

Condition 1

Condition 2

Condition n

false

false

false

true

true

true

…false true

Presenter
Presentation Notes
For non-nested branches, each branch is independent of the other. Condition 1 does not influence whether or not condition 2 is executed. For n=2, there are 4 paths. C1=FALSE/C2=FALSE, C1=TRUE/C2=FALSE, C1=FALSE/C2=TRUE, C2=FALSE/C2=FALSEEach branch offers two possibilities. For n=3 there are 2*2*2 paths. For n non-nested branches there are 2n paths.In the worst case, the number of paths in software is exponential! This is sometimes called the path explosion problem. If we were to count all paths in the Linux kernel there are more paths than there are stars in the galaxy. With the constant growth of software, the computational demands to analyze programs continues to grow.

Truth Tables

• Given a truth table with n Boolean variables, how many rows are
there in the truth table?

Truth Tables and Control Flow Graphs

6

C1 C2 C3 Behavior

False False False

False False True

False True False

False True True

True False False

True False True

True True False

True True True

23=8 possible values for the tuple (C1, C2, C3)

Truth Tables and Control Flow Graphs

7

If C2 is false then C3 is not evaluated.

C1 C2 C3 Behavior

False False N/A

False False N/A

False True False

False True True

True False N/A

True False N/A

True True False

True True True

Truth Tables and Control Flow Graphs

8

CFG has 6 paths.

C1 C2 C3 Behavior

False False N/A

False True False

False True True

True False N/A

True True False

True True True

Truth Tables and Control Flow Graphs

9

What paths include a “crash” event?
2

3

4 6

8

9

10 12 15

17

18

C1 C2 C3 Behavior

False False N/A 2,3,6,8,15,17,18

False True False 2,3,6,8,9,12,17,18

False True True 2,3,6,8,9,10,17,18

True False N/A 2,3,4,8,15,17,18

True True False 2,3,4,8,9,12,17,18

True True True 2,3,4,8,9,10,17,18

Truth Tables and Control Flow Graphs

10

4 of 6 behaviors have “crash” events.
2 of 6 behaviors do not have “crash” events.2

3

4 6

8

9

10 12 15

17

18

C1 C2 C3 Behavior

False False N/A 2,3,6,8,15,17,18

False True False 2,3,6,8,9,12,17,18

False True True 2,3,6,8,9,10,17,18

True False N/A 2,3,4,8,15,17,18

True True False 2,3,4,8,9,12,17,18

True True True 2,3,4,8,9,10,17,18

Path Feasibility

• A control flow graph (CFG) is a graph representation that captures the
paths that might be traversed through a program during its
execution, (i.e. the orderings that the program’s statements may be
executed in at runtime).

• A feasible path is a path that could be possible to traverse during a
program execution.

• An infeasible path is a path that is not possible to traverse during a
program execution.

• A CFG does not distinguish between feasible and infeasible paths.

Path Feasibility

• Determining if a path is feasible requires computing variable inputs
that satisfy the branch conditions that would allow for a given path,
which is the Boolean satisfiability problem.

• SAT was the first known NP-complete problem, as proved by Stephen Cook at
the University of Toronto in 1971 and independently by Leonid Levin at the
National Academy of Sciences in 1973. Until that time, the concept of an NP-
complete problem did not even exist. [Wikipedia]

Dead Code Detection

• A CFG can be used however to detect
obviously dead code (not all dead code).

• If the CFG has a structure graph root (no
incoming edges) that is not the control flow
root, then the statement corresponding to the
root is dead code.

• Q cfg = CommonQueries.cfg(Common.functions(“foo”));
• Q deadCode =

cfg.roots().difference(cfg.nodes(XCSG.controlFlowRoot));

Dead Code Detection

Dead Code!

Path Counting

• Strategy 1: Create truth table and collapse after exploring all 2^n
paths, always 2^n

• Strategy 2: DFS counting paths, worst case still 2^n

Why count paths?

• The number of paths is a measure of how complex a piece of code is
• Cyclomatic Complexity is a cheap estimation of complexity
• Cyclomatic Complexity = (|CFG Edges| – |CFG Nodes|) + 2

• Bugs tend to be located around more complex code

Activity: Does this program contain a vulnerability?

#include <stdio.h>
int main(int argc, char *argv) {

char buf[64];
strcpy(buf, argv[1]);
return 0;

}

Presenter
Presentation Notes
Using our model of a buffer overflow can we answer whether or not this program has a vulnerability? Yes…this is perhaps the simplest example of a buffer overflow that we can make.input = <any string longer than 64 characters>

Activity: Does this program contain a vulnerability?
#define BUFFERSIZE 200
int copy_it (char* input , unsigned int length){

char c, localbuf[BUFFERSIZE];
unsigned int upperlimit = BUFFERSIZE - 10;
unsigned int quotation = roundquote = FALSE;
unsigned int input_index = output_index = 0;
while (input_index < length){ c = input[input_index++];

if((c == '<') && (!quotation)){ quotation = true; upperlimit--; }
if((c == '>') && (quotation)){ quotation = false; upperlimit++; }
if((c == '(') && (!quotation) && (!roundquote)){ roundquote = true; }
if((c == ')') && (!quotation) && (roundquote)){ roundquote = false; upperlimit++; }
// if there is sufficient space in the buffer, write the character
if(output_index < upperlimit){ localbuf[output_index] = c; output_index++; }

}
if(roundquote){ localbuf[output_index] = ')'; output_index++; }
if(quotation){ localbuf[output_index] = '>'; output_index++; }
return output_index;

}

Presenter
Presentation Notes
Using our model of a buffer overflow can we answer whether or not this program has a vulnerability?

Activity: Does this program contain a vulnerability?
#define BUFFERSIZE 200
int copy_it (char* input , unsigned int length){

char c, localbuf[BUFFERSIZE];
unsigned int upperlimit = BUFFERSIZE - 10;
unsigned int quotation = roundquote = FALSE;
unsigned int input_index = output_index = 0;
while (input_index < length){ c = input[input_index++];

if((c == '<') && (!quotation)){ quotation = true; upperlimit--; }
if((c == '>') && (quotation)){ quotation = false; upperlimit++; }
if((c == '(') && (!quotation) && (!roundquote)){ roundquote = true; /* (missing) upperlimit--; */ }
if((c == ')') && (!quotation) && (roundquote)){ roundquote = false; upperlimit++; }
// if there is sufficient space in the buffer, write the character
if(output_index < upperlimit){ localbuf[output_index] = c; output_index++; }

}
if(roundquote){ localbuf[output_index] = ')'; output_index++; }
if(quotation){ localbuf[output_index] = '>'; output_index++; }
return output_index;

}

Presenter
Presentation Notes
Using our model of a buffer overflow can we answer whether or not this program has a vulnerability? Yes…but our ability to do so is at the edge of our current technology.input = "Name Lastname < name@mail.org > ()"The original code is much more complex! Has ∼10 loops (nesting depth is 4), gotos, lots of pointer arithmetic, calls to string functions…very few program analysis tools can even handle the toy example. This Buffer overflow in an email address parsing function of Sendmail was discovered in 2003 by Mark Dowd. The Sendmail function containing the bug consists of a parsing loop using a state machine consisting of ∼500 LOC. Thomas Dullien later extracted this smaller version of the bug (less than 50 LOC) as an example of a hard problem for static analysis.The original bug can be found at ftp://ftp.sendmail.org/pub/sendmail/past-releases/sendmail.8.12.7.tar.gz in the crackaddr function of the headers.c file (lines 1022-1352). It was found by locating array writes and then noticing the parsing was particularly complex. The auditor assumed it was unlikely there was not a bug and continued searching until the vulnerability was found.

input = "Name Lastname < name@mail.org >
()
()"

Path Counting + Human Reasoning

• Human intuition: This code is complex and it has an array write I
bet someone messed this up and there is a vulnerability here.

• They were correct: Sendmail Crackaddr CVE-2002-1337 (discovered by Mark
Dowd)

• Buffer overflow in an email address parsing function of Sendmail. Consists of
a parsing loop using a state machine. ∼500 LOC

• Bounty for Static Analyzers since 2011 by Halvar Flake Halvar extracted a
smaller version of the bug as an example of a hard problem for static
analyzers. ∼50 LOC

DFS Enumeration Strategy (Top Down)

Push A (root) on stack.

Stack: [A]
History:
Paths:

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Pop A onto history. A is not a leaf so push C,B.

Stack: [C, B]
History: [A]
Paths:

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Pop B onto history. B is a leaf so save path and trim history.

Stack: [C]
History: [A, B]
Paths: [A, B]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Pop C onto history. C is not a leaf so push E,D.

Stack: [E, D]
History: [A, C]
Paths: [A, B]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Pop D onto history. D is a leaf so save path and trim history.

Stack: [E]
History: [A, C, D]
Paths: [A, B], [A, C, D]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Pop E onto history. E is a leaf so save path and trim history.

Stack: []
History: [A, C, E]
Paths: [A, B], [A, C, D], [A, C, E]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Top Down)

Stack is empty. Paths are enumerated.

Stack: []
History: [A, C]
Paths: [A, B], [A, C, D], [A, C, E]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Push B,D,E (leaves) on stack.

Stack: [B, D, E]
History:
Paths:

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop E onto history. E is not a root so push C.

Stack: [B, D, C]
History: [E]
Paths:

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop C onto history. C is not a root so push A.

Stack: [B, D, A]
History: [E, C]
Paths:

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop A onto history. A is a root so save path and trim history.

Stack: [B, D]
History: [E, C, A]
Paths: [E, C, A]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop D onto history. D is not a root so push C.

Stack: [B, C]
History: [D]
Paths: [E, C, A]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop C onto history. C is not a root so push A.

Stack: [B, A]
History: [D, C]
Paths: [E, C, A]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop A onto history. A is a root so save path and trim history.

Stack: [B]
History: [D, C, A]
Paths: [E, C, A], [D, C, A]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop B onto history. B is not a root so push A.

Stack: [A]
History: [B]
Paths: [E, C, A], [D, C, A]

A

CB

D E

T

T

F

F

DFS Enumeration Strategy (Bottom Up)

Pop A onto history. A is a root so save path and trim history.

Stack: []
History: [B, A]
Paths: [E, C, A], [D, C, A], [B, A]

A

CB

D E

T

T

F

F

Efficient Path Counting

• Strategy 1: Create truth table and collapse after exploring all 2^n
paths, always 2^n

• Strategy 2: DFS counting paths, worst case still 2^n
• Strategy 3: ?

Efficient Path Counting

• Strategy 1: Create truth table and collapse after exploring all 2^n
paths, always 2^n

• Strategy 2: DFS counting paths, worst case still 2^n
• Strategy 3: Path Multiplicities O(n)

Leaf Multiplicities

1. Let each leaf node represent a value of 1 and all other
nodes have default value 0

2. Propagate the node multiplicities upward by summing
the value of the parent node and child node and
assigning the result to the parent
• Note that a node value cannot be propagated until all of its

incoming child values have been propagated
• Note if a function call is made then the number of paths is

multiplied by the number of paths in the function (not added)

3. Repeat until no values are left to propagate and then
take the value on the root for the final count of paths

1

1

1 1 1

2

3

3 3

6

6

*In this example we assume foo() has 1 path

Root Multiplicities

1. Let each root node represent a value of 1 and all other
nodes have default value 0

2. Propagate the node multiplicities downward by summing
the value of the child node and parent node and
assigning the result to the child
• Note that a node value cannot be propagated until all of its

incoming parent values have been propagated
• Note if a function call is made then the number of paths is

multiplied by the number of paths in the function (not added)
3. Repeat until no values are left to propagate and then

sum the values across all leaves for the final count of
paths

6

6

2 2 2

2

2

1 1

1

1

*In this example we assume foo() has 1 path

	Slide Number 1
	Slide Number 2
	Counting Program Paths
	Counting Program Paths
	Truth Tables
	Truth Tables and Control Flow Graphs
	Truth Tables and Control Flow Graphs
	Truth Tables and Control Flow Graphs
	Truth Tables and Control Flow Graphs
	Truth Tables and Control Flow Graphs
	Path Feasibility
	Path Feasibility
	Dead Code Detection
	Dead Code Detection
	Path Counting
	Why count paths?
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Activity: Does this program contain a vulnerability?
	Slide Number 20
	Path Counting + Human Reasoning
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Top Down)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	DFS Enumeration Strategy (Bottom Up)
	Efficient Path Counting
	Efficient Path Counting
	Leaf Multiplicities
	Root Multiplicities

