

Brainf*ck Lexical Analysis

Program: ++[>+[+]].
Program Tokens: INCREMENT INCREMENT LOOP_HEADER MOVE_RIGHT INCREMENT LOOP_HEADER INCREMENT
LOOP_FOOTER LOOP_FOOTER WRITE <EOF>

Brainf*ck Parsing Rules

Brainf*ck Parse Tree

Program: ++[>+[+]].

Brainf*ck Abstract Syntax Tree (AST)

Parse Tree(s) to AST

Brainf*ck AST to Program Graph

Parse Tree(s) to AST

• Brainf*ck Hello World Program
• Graph contains information necessary to

execute program
• This language should be simple to analyze

right???
• No variables, just tape cells
• How many behaviors could there be?

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

https://github.com/benjholla/Elemental

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

https://github.com/benjholla/Elemental

Elemental: A Brainf*ck Derivative

• github.com/benjholla/Elemental
• Goal is to be basic, not to be tiny
• Separates looping and branching
• New features to explore impacts of

modern language features

• ‘?’ could pass control to any
function!

• ‘&’ could jump to any line!
• Goto labels with ‘?’ or ‘&’ could be

simulated with branching or loops
• These blur control flow with data

https://github.com/benjholla/Elemental

Positive Trend – Addressing the Languages

• Data drives execution
• Data is half of the program!
• “The illusion that your program is manipulating its data is powerful. But it is

an illusion: The data is controlling your program.”

• Crema: A LangSec-Inspired Programming Language
• Giving a developer a Turning complete language for every task is like giving a

16 year old a formula one car (something bad is bound to happen soon)

Positive Trend – Addressing the Languages

• Data drives execution
• Data is half of the program!
• “The illusion that your program is manipulating its data is powerful. But it is an

illusion: The data is controlling your program.”

• Crema: A LangSec-Inspired Programming Language (DARPA Pilot Study)
• Giving a developer a Turing complete language for every task is like giving a 16 year

old a formula one car (something bad is bound to happen soon)
• Apply principle of least privilege to computation (least computation principle)

• Computational power exposed to attacker is privilege. Minimize it.
• Try copy-pasting the XML billion-laughs attack from Notepad into MS Word if you want to see

why…

Scaling Up: Program Analysis for COOL

• Classroom Object Oriented Language (COOL)
• https://en.wikipedia.org/wiki/Cool_(programming_language)
• http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course

=Compilers

• COOL Program Graph Indexer
• Type hierarchy
• Containment relationships
• Function / Global variable signatures
• Function Control Flow Graph
• Data Flow Graph (in progress)
• Inter-procedural relationships:

• Call Graph (implemented via compliance to XCSG!)
• https://github.com/benjholla/AtlasCOOL (currently private)

https://en.wikipedia.org/wiki/Cool_(programming_language)
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=Compilers
https://github.com/benjholla/AtlasCOOL

Program Analysis for Contemporary Languages

• http://www.ensoftcorp.com/atlas (Atlas)
• C, C++, Java Source, Java Bytecode, and now Brainfuck/COOL!

• https://scitools.com (Understand)
• C, C++ Source

• http://mlsec.org/joern (Joern)
• C, C++, PHP Source

• https://www.hex-rays.com/products/ida (IDA)
• https://binary.ninja (Binary Ninja)
• https://www.radare.org (Radare)

http://www.ensoftcorp.com/atlas
https://scitools.com/
http://mlsec.org/joern
https://www.hex-rays.com/products/ida
https://binary.ninja/
https://www.radare.org/

Data Flow Graph (DFG)
Example:
1. x = 2;
2. y = 3;
3. z = 7;
4. a = x + y;
5. b = x + z;
6. a = 2 * x;
7. c = y + x + z;
8. t = a + b;
9. print(t); detected failure

What lines must we consider if the value of t printed is
incorrect?
• A Data Flow Graph creates a graph of primitives and variables

where each assignment represents an edge from the RHS to
the LHS of the assignment

• The Data Flow Graph represents global data dependence at
the operator level (the atomic level) [FOW87]

Relevant lines:
1,3,5,6,8

Code Transformation (before – flow insensitive):
Static Single Assignment Form

1. x = 1;
2. x = 2;
3. if(condition)
4. x = 3;
5. read(x);
6. x = 4;
7. y = x;

1 2 3 4

x

read(arg)

Resulting graph when statement ordering is not considered.

y

Code Transformation (after – flow sensitive):
Static Single Assignment Form

1. x = 1;
2. x = 2;
3. if(condition)
4. x = 3;
5. read(x);
6. x = 4;
7. y = x;

1. x1,1 = 1;
2. x2,2 = 2;
3. if(condition)
4. x3,4 = 3;
5. read(x2,2,3,4);
6. x4,6 = 4;
7. y1,7 = x4,6;

Note: <Def#,Line#>

1 2 3 4

read(arg)

x1,1 x2,2 x3,4 x4,6

y1,7

Points-to (Pointer) Analysis

• Could we answer whether or not two variables point-to the same
value in memory?

• Why do we even care?
• “Virtually all interesting questions one may want to ask of a program will

eventually need to query the possible values of a pointer expression, or its
relationship to other pointer expressions.”

• Constant propagation
• Precise call graph construction
• Dead code elimination
• Immutability analysis
• Etc.

Points-to Analysis

• Could we answer whether or not two variables may point-to the
same value in memory?

• Could we answer whether or not two variables must point-to the
same value in memory?

Points-to Analysis

• Easy (useless) Solution:
• A variable must at least point-to nothing (null)
• Every variable may at most point-to anything

• Perfect (impossible) Solution:
• A perfect Points-to is undecidable [Landi1992] [Ramalingan1994]

Andersen-style Points-to Analysis

• Flow-insensitive
• The order of statements is not considered (does not leverage control flow

graph)

• Analysis
1. Identify each memory value to track
2. Consider pointer assignments as subset constraints

Andersen-style Points-to Analysis

• Fixed-point Algorithm Sketch (for Java)
1. Identify each value to track (i.e. “new”  XCSG.Instantiation) and assign it a

unique “address”
2. Create a worklist of nodes with addresses to propagate and initialize with

each addressed node
3. If the worklist is not empty, remove a node from the worklist

• Propagate the addresses of the node to each data flow successor node
• If the data flow successor node received new addresses then add the successor node to

the worklist
• Repeat step 3

4. When the algorithm reaches a fixed-point (no addresses left to propagate)
then the points-to sets have been computed

Andersen-style Points-to Analysis

• Worst Case Performance?
• Worst Case: Every variable is assigned to every other variable.

• This is the handshake problem  n* (n-1)  O(n2) for each iteration
• Statements are being processed out of order, so processing a new statement

could cause you to redo all previous work  n*(n2)  O(n3)

	Slide Number 1
	Brainf*ck Lexical Analysis
	Brainf*ck Parsing Rules
	Brainf*ck Parse Tree
	Brainf*ck Abstract Syntax Tree (AST)
	Brainf*ck AST to Program Graph
	Slide Number 7
	Elemental: A Brainf*ck Derivative
	Elemental: A Brainf*ck Derivative
	Elemental: A Brainf*ck Derivative
	Positive Trend – Addressing the Languages
	Slide Number 12
	Positive Trend – Addressing the Languages
	Scaling Up: Program Analysis for COOL
	Program Analysis for Contemporary Languages
	Data Flow Graph (DFG)
	Code Transformation (before – flow insensitive): �Static Single Assignment Form
	Code Transformation (after – flow sensitive): �Static Single Assignment Form
	Points-to (Pointer) Analysis
	Points-to Analysis
	Points-to Analysis
	Andersen-style Points-to Analysis
	Andersen-style Points-to Analysis
	Andersen-style Points-to Analysis

