public class Puzzlel® {

public static void main(String[] args) {
((Puzzlel®) null).print();

}

private static void print() {
System.out.println("Hello World!");

‘: }

% 1

Brainf*ck Lexical Analysis

MOVE RIGHT: '>';
MOVE LEFT: '<';
INCREMENT: "+7';
DECREMENT: '-';
WRITE: '.';

READ: ',';

LOOP HEADER: '[';
LOOP FOOTER: ']';

Program: ++[>+[+]].

Program Tokens: INCREMENT INCREMENT LOOP_HEADER MOVE_RIGHT INCREMENT LOOP_HEADER INCREMENT
LOOP_FOOTER LOOP_FOOTER WRITE <EOF>

Braint*ck Parsing Rules

file: i1nstructions EOF;
instructions: i1nstruction+;

instruction: loop
| MOVE RIGHT
| MOVE LEFT
| INCREMENT
| DECREMENT
| WRITE
| READ

-
F

loop: LOOP HEADER instructions+

file —{instructiu:ns]— <EQF> [—

instructions
instruction

instruction

loop

.—

MOVE_RIGHT —|

l.—

MOVE_LEFT —|

INCREMENT ——

[

DECREMENT —1

WRITE

READ

loop —

LOOP FOOTER;

LOOP_HEADER LOOP_FOOTER

Brainf*ck Parse Tree

Program: ++[>+[+]].

Brainf*ck Abstract Syntax Tree (AST)

[instructicns] EOF

[inst n in:tructicn} [instructicn]

ruu:tiu:n] [in:tructic] [
= ﬁ

Parse Tree(s) to AST i i ﬁ

[instructicn] [instructicn] [instructicn] EI loop
I

tfrue
é ﬁ Parse Tree(s) to AST
loop ?
-]

Wl Graph 2 3

[hello.bf 5
|= & Brainfuck Small

= hello bf

R
3 [P e e e]
B T I i e e S

right???
* No variables, just tape cells
 How many behaviors could there be?

CEEr—
* Brainf*ck Hello World Program
e Graph contains information necessary to
execute program
e This language should be simple to analyze E

¥ EmorLog 4" Search (2] Problems | Ml Atlas Shell 52 | E) Console & Progress [Analysis Keys % Git Staging B Ekeaish = O
'y

Operation completed successfully...

show(cfg(universe.nodes(X(5G.Function)))

com.benjholla.atlas.brainfuck.interpreter.BrainfuckGraphInterpreter.execute(selected)

resl: String =
"Hello World!
v

Evaluate: |

Elemental: A Brainf*ck Derivative

e github.com/benjholla/Elemental instruction Description

+ Increment the byte at the current tape cell by 1

e Goalis to be basic, not to be tiny
» Separates looping and branching

= Decrement the byte at the current tape cell by 1

= Move the tape one cell to the left

e New featu res to explore im pPa cts Of > Move the tape one cell to the right

mOdern Ia nguage featu res . (Store) Read byte value from input into current tape cell

(Recall) Write byte value to output from current tape cell

(Branch) If the byte value at the current cell is 0 then jump to the instruction following the matching), else

(execute the next instruction
(While Loop) If the byte value at the current cell is 0 then jump to the instruction following the matching],
[else execute instructions until the matching] and then unconditionally return to the |
[0-9]+: (Function) Declares a uniquely named function (named [0-9]+ within range 0-255)
{[0-9]+} (Static Dispatch) Jump to a named function
? (Dynamic Dispatch/Function Pointer) Jumps to a named function with the value of the current cell
"[0-9]+" (Label) Sets a unique label (named [0-9]+ within range 0-255) within a function
f0-9]+" (GOTO) Jumps to a named label within the current function
& (Computed GOTO) Jumps to the named label within the current function with the value of the current cell

A one line comment

https://github.com/benjholla/Elemental

Elemental: A Brainf*ck Derivative

e github.com/benjholla/Elemental instruction Description

+ Increment the byte at the current tape cell by 1

e Goalis to be basic, not to be tiny
» Separates looping and branching

= Decrement the byte at the current tape cell by 1

= Move the tape one cell to the left

e New featu res to explore im pPa cts Of > Move the tape one cell to the right

mOdern Ia nguage featu res . (Store) Read byte value from input into current tape cell

(Recall) Write byte value to output from current tape cell

(Branch) If the byte value at the current cell is 0 then jump to the instruction following the matching), else

(execute the next instruction
(While Loop) If the byte value at the current cell is 0 then jump to the instruction following the matching],
[else execute instructions until the matching] and then unconditionally return to the |
[0-9]+: (Function) Declares a uniquely named function (named [0-9]+ within range 0-255)
{[0-9]+} (Static Dispatch) Jump to a named function
? (Dynamic Dispatch/Function Pointer) Jumps to a named function with the value of the current cell
"[0-9]+" (Label) Sets a unique label (named [0-9]+ within range 0-255) within a function
f0-9]+" (GOTO) Jumps to a named label within the current function
& (Computed GOTO) Jumps to the named label within the current function with the value of the current cell

A one line comment

https://github.com/benjholla/Elemental

Elemental: A Brainf*ck Derivative

github.com/benjholla/Elemental
e Goalis to be basic, not to be tiny
» Separates looping and branching

* New features to explore impacts of
modern language features

“?” could pass control to any
function!

‘&’" could jump to any line!

Goto labels with “?’ or ‘&’ could be
simulated with branching or loops

These blur control flow with data

Instruction Description

+ Increment the byte at the current tape cell by 1
= Decrement the byte at the current tape cell by 1
= Move the tape one cell to the left

= Move the tape one cell to the right

. (Store) Read byte value from input into current tape cell

(Recall) Write byte value to output from current tape cell

(Branch) If the byte value at the current cell is 0 then jump to the instruction following the matching), else

(execute the next instruction
(While Loop) If the byte value at the current cell is 0 then jump to the instruction following the matching],
[else execute instructions until the matching] and then unconditionally return to the |
[0-9]+: (Function) Declares a uniquely named function (named [0-9]+ within range 0-255)
{[0-9]+} (Static Dispatch) Jump to a named function
? (Dynamic Dispatch/Function Pointer) Jumps to a named function with the value of the current cell
"[0-9]+" (Label) Sets a unique label (named [0-9]+ within range 0-255) within a function
f0-9]+" (GOTO) Jumps to a named label within the current function
& (Computed GOTO) Jumps to the named label within the current function with the value of the current cell
T ————————
A one line comment

https://github.com/benjholla/Elemental

Positive Trend — Addressing the Languages

» Data drives execution
e Data is half of the program!

e “The illusion that your program is manipulating its data is powerful. But it is
an illusion: The data is controlling your program.”

 Crema: A LangSec-Inspired Programming Language

e Giving a developer a Turning complete language for every task is like giving a
16 year old a formula one car (something bad is bound to happen soon)

Positive Trend — Addressing the Languages

e Data drives execution
e Data is half of the program!

e “The illusion that your program is manipulating its data is powerful. But it is an
illusion: The data is controlling your program.”

 Crema: A LangSec-Inspired Programming Language (DARPA Pilot Study)

e Giving a developer a Turing complete language for every task is like giving a 16 year
old a formula one car (something bad is bound to happen soon)
e Apply principle of least privilege to computation (least computation principle)
 Computational power exposed to attacker is privilege. Minimize it.

* Try copy-pasting the XML billion-laughs attack from Notepad into MS Word if you want to see
why...

Scaling Up: Program Analysis for COOL

e Classroom Object Oriented Language (COOL)
e https://en.wikipedia.org/wiki/Cool (programming language) = i

e http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course
=Compilers

 COOL Program Graph Indexer
e Type hierarchy
e Containment relationships
e Function / Global variable signatures
e Function Control Flow Graph
e Data Flow Graph (in progress)

* Inter-procedural relationships:
e Call Graph (implemented via compliance to XCSG!)
e https://github.com/benjholla/AtlasCOOL (currently private)

https://en.wikipedia.org/wiki/Cool_(programming_language)
http://openclassroom.stanford.edu/MainFolder/CoursePage.php?course=Compilers
https://github.com/benjholla/AtlasCOOL

Program Analysis for Contemporary Languages

e http://www.ensoftcorp.com/atlas (Atlas)
e C, C++, Java Source, Java Bytecode, and now Brainfuck/COOL!

e https://scitools.com (Understand)
e C, C++ Source

e http://mlsec.org/joern (Joern)
e C, C++, PHP Source

e https://www.hex-rays.com/products/ida (IDA)

e https://binary.ninja (Binary Ninja)

e https://www.radare.org (Radare)

http://www.ensoftcorp.com/atlas
https://scitools.com/
http://mlsec.org/joern
https://www.hex-rays.com/products/ida
https://binary.ninja/
https://www.radare.org/

[=] inty=3; =0 intz =7; (=] —=intx=2;

Data Flow Graph (DFG) y

Example: dfflocal)| dfflocal)| dfflocal) df(local)l dfflocal)| dfflocal)| dfflocal) dftlﬁcﬂ

1. x=2; T
A 3=x+ v; df(loﬂ 7 5 * *,/
S box+z g -

6. a=2%*x; _ <>i . [

7. c=y+x+z Relevant lines: C eocan T

8 t=g+ b,‘ 1,3,5,6,8 . diflocal)

9. print(t), <—— detected failure

H o A
B xl}li: a+h;

What lines must we consider if the value of t printed is
incorrect? 8
* A Data Flow Graph creates a graph of primitives and variables dtoca)
where each assignment represents an edge from the RHS to
the LHS of the assignment -
 The Data Flow Graph represents global data dependence at

the operator level (the atomic level) [FOWS87]

Code Transformation (before — flow insensitive):
Static Single Assignment Form

1. x=1;

2. X=2;

3. if(condition)
4, x=3;

5. read(x);

7. y=X;

Resulting graph when statement ordering is not considered.

Code Transformation (after — flow sensitive):
Static Single Assignment Form

1. x=1, 1. x,=1;

2. X=2, 2. Xy,=2;

3. if(condition) - 3. if(condition)
4. x=3, 4. X34=3;

5. read(x); 5. read(x; ,,3 4);
6. x=4; 6. X46=4;

7. y=X; 7/

+ Y1,7= X460 read(arg) Q

Note: <Def#,Line#t>

Points-to (Pointer) Analysis

e Could we answer whether or not two variables point-to the same
value in memory?

* Why do we even care?

e “Virtually all interesting questions one may want to ask of a program will
eventually need to query the possible values of a pointer expression, or its
relationship to other pointer expressions.”

* Constant propagation

e Precise call graph construction
e Dead code elimination

e Immutability analysis

e Etc.

Points-to Analysis

e Could we answer whether or not two variables may point-to the
same value in memory?

e Could we answer whether or not two variables must point-to the
same value in memory?

Points-to Analysis

e Easy (useless) Solution:
e Avariable must at least point-to nothing (null)
e Every variable may at most point-to anything

e Perfect (impossible) Solution:
e A perfect Points-to is undecidable [Landi1992] [Ramalingan1994]

Andersen-style Points-to Analysis

* Flow-insensitive
e The order of statements is not considered (does not leverage control flow
graph)
* Analysis
1. ldentify each memory value to track
2. Consider pointer assighments as subset constraints

Constraint type | Assignment | Constraint Meaning
Base a=&b a 2 {b} loc(b) € pts(a)
Simple a=b a2b pts(a) 2 pts(b)
Complex a="%b a2%*b vvepts(b). pts(a) 2 pts(v)
Complex *a=b *a2b vvepts(a). pts(v) 2 pts(b)

Andersen-style Points-to Analysis

 Fixed-point Algorithm Sketch (for Java)

1.

|dentify each value to track (i.e. “new” > XCSG.Instantiation) and assign it a
unique “address”

Create a worklist of nodes with addresses to propagate and initialize with
each addressed node

If the worklist is not empty, remove a node from the worklist
e Propagate the addresses of the node to each data flow successor node

e |f the data flow successor node received new addresses then add the successor node to
the worklist

* Repeat step 3
When the algorithm reaches a fixed-point (no addresses left to propagate)
then the points-to sets have been computed

Andersen-style Points-to Analysis

e Worst Case Performance?

* Worst Case: Every variable is assigned to every other variable.
e This is the handshake problem = n* (n-1) = O(n?) for each iteration

e Statements are being processed out of order, so processing a new statement
could cause you to redo all previous work =2 n*(n?) 2 O(n3)

	Slide Number 1
	Brainf*ck Lexical Analysis
	Brainf*ck Parsing Rules
	Brainf*ck Parse Tree
	Brainf*ck Abstract Syntax Tree (AST)
	Brainf*ck AST to Program Graph
	Slide Number 7
	Elemental: A Brainf*ck Derivative
	Elemental: A Brainf*ck Derivative
	Elemental: A Brainf*ck Derivative
	Positive Trend – Addressing the Languages
	Slide Number 12
	Positive Trend – Addressing the Languages
	Scaling Up: Program Analysis for COOL
	Program Analysis for Contemporary Languages
	Data Flow Graph (DFG)
	Code Transformation (before – flow insensitive): �Static Single Assignment Form
	Code Transformation (after – flow sensitive): �Static Single Assignment Form
	Points-to (Pointer) Analysis
	Points-to Analysis
	Points-to Analysis
	Andersen-style Points-to Analysis
	Andersen-style Points-to Analysis
	Andersen-style Points-to Analysis

