
Fast and E�ective Optimization

of Statically Typed Object-Oriented Languages

David Francis Bacon

Report No. UCB/CSD-98-1017

December 1997

Computer Science Division (EECS)
University of California
Berkeley, California 94720

Fast and E�ective Optimization

of Statically Typed Object-Oriented Languages

by

David Francis Bacon

A.B. (Columbia College) 1985

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge:

Professor Susan L. Graham, Chair
Professor Jonathan Arons
Professor Katherine Yelick

December 1997

Fast and E�ective Optimization

of Statically Typed Object-Oriented Languages

Copyright c
 1997

by

David Francis Bacon

Abstract

Fast and E�ective Optimization

of Statically Typed Object-Oriented Languages

by

David Francis Bacon

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Susan L. Graham, Chair

In this dissertation, we show how a relatively simple and extremely fast interprocedural

optimization algorithm can be used to optimize many of the expensive features of statically

typed, object-oriented languages | in particular, C++ and Java.

We present a new program analysis algorithm, Rapid Type Analysis, and show that it is

fast both in theory and in practice, and signi�cantly out-performs other \fast" algorithms

for virtual function call resolution.

We present optimization algorithms for the resolution of virtual function calls, conver-

sion of virtual inheritance to direct inheritance, elimination of dynamic casts and dynamic

type checks, and removal of object synchronization. These algorithms are all presented

within a common framework that allows them to be driven by the information collected

by Rapid Type Analysis, or by some other type analysis algorithm.

Collectively, the optimizations in this dissertation free the programmer from having

to sacri�ce modularity and extensibility for performance. Instead, the programmer can

freely make use of the most powerful features of object-oriented programming, since the

optimizer will remove unnecessary extensibility from the program.

Chair Date

To Laura,

for all your love and support

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Language and Optimization . 1
1.2 Optimization of Object-Oriented Languages 2
1.3 My Thesis . 3

1.3.1 An Optimization Framework . 3
1.3.2 Optimization by Specialization . 4

1.4 Scope of this Work . 4
1.5 Contributions of this Dissertation . 6
1.6 Contributors . 6
1.7 Outline . 7

2 Related Work 8

2.1 Studies of Object-Oriented Programs . 8
2.1.1 Studies of C++ Programs . 8

2.2 Type Inference . 9
2.2.1 Type Inference for Dynamic Languages 10
2.2.2 Type Analysis for Static Languages 10
2.2.3 Fast Algorithms . 11

2.3 Eliminating Dynamic Dispatch . 11
2.3.1 Cloning . 12
2.3.2 Type Prediction . 13
2.3.3 Designing Dynamics out of the Language 13

2.4 Reducing Code Size . 14

3 Data Structures 16

3.1 The Class Hierarchy Graph . 17
3.1.1 Building the CHG . 21
3.1.2 Complexity . 22
3.1.3 Adapting the CHG for Java . 24

3.2 The Override Frontier . 25

iv

3.3 Program Properties . 31
3.4 The Program Virtual Call Graph . 32

3.4.1 Formal Description . 33
3.4.2 Building the PVG . 35
3.4.3 Complexity . 37
3.4.4 Function Pointers . 37
3.4.5 Constructing the PVG for Java . 39

4 The Rapid Type Analysis Algorithm 40

4.1 The Problem . 40
4.2 The Analysis Spectrum . 40
4.3 Static Analysis Overview . 41

4.3.1 Unique Name . 42
4.3.2 Class Hierarchy Analysis . 43
4.3.3 Rapid Type Analysis . 44
4.3.4 Other Analyses . 45
4.3.5 Type Safety Issues . 45

4.4 The Algorithm . 46
4.5 Complexity . 49

4.5.1 Expected Complexity . 51
4.6 Function and Member Function Pointers . 51
4.7 Special Issues for C++ . 52

4.7.1 Construction VFT's . 52
4.7.2 Local Classes . 55

4.8 Adapting RTA for Java . 56

5 Resolution of Virtual Function Calls 57

5.1 Algorithms for Resolution of Indirect Calls 58
5.2 Resolving Virtual Calls . 60
5.3 Software Architecture . 61

5.3.1 Optimizer Architecture . 61
5.3.2 Measurements Architecture . 63
5.3.3 Timings . 63

5.4 Experimental Results . 64
5.4.1 Methodology . 64
5.4.2 Benchmarks . 65
5.4.3 Live Classes . 69
5.4.4 Resolution of Virtual Function Calls 71
5.4.5 Code Size . 76
5.4.6 Static Complexity . 77
5.4.7 Speed of Analysis . 79

5.5 Related Work . 81
5.5.1 Type Prediction for C++ . 81
5.5.2 Alias Analysis for C++ . 83
5.5.3 Other Work in C++ . 85

v

5.5.4 Other Related Work . 85
5.5.5 Comparison of Available Algorithms 86

5.6 Summary . 88

6 De-virtualization of Inheritance 90

6.1 Uses of Virtual Inheritance . 91
6.2 The Devirtualization Algorithm . 92
6.3 Complexity . 94
6.4 Evaluation . 95

7 Other Uses of Live Class Information 96

7.1 Optimizing Type Equality Tests . 97
7.2 Optimizing Type Instance Tests . 98
7.3 Optimizing Dynamic Casts in Java . 98

7.3.1 Optimizing A Common Idiom . 99
7.4 Optimizing Dynamic Casts in C++ . 100
7.5 Complexity Issues . 101
7.6 Optimizing Virtual Dispatches . 102

7.6.1 Converting Java Interface Calls to Virtual Calls 103
7.7 Eliminating Java Synchronization . 104
7.8 Future Applications . 104

8 Optimizing Incomplete Programs 106
8.1 Compiling a Library . 107

8.1.1 Analyzing a Library . 107
8.1.2 Analyzing a Library with Function Pointers 108
8.1.3 Virtual Function Resolution . 108
8.1.4 De-virtualizing Inheritance . 110
8.1.5 Type Inquiries and Type Casts . 112

8.2 Optimizing Library Clients . 113
8.2.1 Changes to the RTA Algorithm . 114

8.3 Traditional Separate Compilation . 116

9 Conclusion 118
9.1 Problems with C++ . 119
9.2 Future Work . 120

9.2.1 Fast Type Analysis . 120
9.2.2 Fast Run-time Implementation . 120

A Notation 122

A.1 Symbol Glossary . 123

B Measurement Data 126

Bibliography 131

vi

List of Figures

3.1 Illustration of Derived� and Bases� with respect to class M 18
3.2 A group of C++ class declarations . 20
3.3 Class Hierarchy Graph of Program in Figure 3.2. 20
3.4 Algorithm to Construct the Class Hierarchy Graph 22
3.5 Visible Methods for Example Program . 26
3.6 Class Hierarchy Graph showing Override Frontier of w::g 26
3.7 Algorithm to Compute Inherit and Override Sets 28
3.8 Illustration of Frontier Algorithm . 28
3.9 Code of the example program . 32
3.10 PVG of the example program in Figure 3.9. 33
3.11 The call instances for the PVG in Figure 3.10. 34
3.12 Algorithm to Construct the Program Virtual-call Graph (PVG) 36
3.13 Building the PVG for C++ . 38

4.1 Type Analysis Algorithms: time to execute during compilation versus ac-
curacy of solution. 41

4.2 Program illustrating the di�erence between the static analysis methods. . . 42
4.3 The Rapid Type Analysis Algorithm . 47
4.4 RTA Extensions for Function Pointers and Member Function Pointers (1) . 53
4.5 RTA Extensions for Function Pointers and Member Function Pointers (2) . 54
4.6 C++ Code Requiring Construction VFT's 54

5.1 Two algorithms for resolving indirect function calls. 59
5.2 Eliminator architecture . 62
5.3 Static Distribution of Function Call Types 67
5.4 Dynamic Distribution of Function Call Types 68
5.5 Unused Classes: RTA Algorithm vs. Dynamic Trace. 70
5.6 Resolution of Possibly Live Static Callsites 71
5.7 Resolution of Dynamic Calls . 72
5.8 Removal of Dead Code by Static Analysis 76
5.9 Elimination of Dead Functions by Static Analysis 78
5.10 Elimination of Virtual Call Instances by Static Analysis 79
5.11 Comparison of Type Prediction vs. Virtual Function Resolution 82
5.12 Resolution of Static Callsites { Alias Analysis Benchmarks 83

vii

5.13 The Spectrum of Virtual Function Elimination Algorithms for Statically
Typed Languages. 87

6.1 Finding the Live Portion of the CHG . 92
6.2 The Base Class De-virtualization Algorithm 93

7.1 A Class Hierarchy that Complicates Type Inquiries 97
7.2 Optimizing a Dynamic Type Inquiry . 99
7.3 A Simple Dynamic Cast Optimization Algorithm for use with C++-style

Object Models. 100
7.4 A More Sophisticated Dynamic Cast Optimization Algorithm 101
7.5 Virtual Function Dispatch using Two-Column Virtual Function Tables . . 102
7.6 Calculating the set of Possible This Pointer Adjustments 103
7.7 Virtual Function Dispatch after Optimization 103

8.1 Rapid Type Analysis algorithm modi�ed for use with libraries. 107
8.2 Modi�cations to the extended RTA algorithm of Figures 4.4 and 4.5 to

handle function pointers in the presence of libraries. 109
8.3 Indirect Function Call Resolution for Libraries 110
8.4 Modi�cations to the algorithm for de-virtualizing inheritance. 111
8.5 Inability to De-virtualize Inheritance in a Library: Case 1. 111
8.6 Inability to De-virtualize Inheritance in a Library: Case 2. 112
8.7 When a non-library class is instantiated, if any of its methods override

methods of library classes, they must be assumed to be live. 115

viii

List of Tables

3.1 Static Properties of the Class Hierarchy . 31

5.1 Benchmark Programs. 65
5.2 Totals for static (compile-time) quantities measured 66
5.3 Totals for dynamic (run-time) quantities measured 66
5.4 Compile-Time Cost of Static Analysis . 80

B.1 Static Distribution of Function Call Types 127
B.2 Dynamic Distribution of Function Call Types 127
B.3 Static Resolution of Virtual Call Sites . 128
B.4 Dynamic Resolution of Virtual Call Sites 128
B.5 A�ect of Analysis on Code Size . 129
B.6 Elimination of Dead Functions by Static Analysis 129
B.7 Elimination of Virtual Call Arcs by Static Analysis 130
B.8 Live Classes: RTA algorithm vs. dynamic trace 130

ix

Acknowledgements

The faculty and students of the Computer Science Division at the University of California

at Berkeley provided an incredible atmosphere of intellectual excitement and rigorous

inquiry that will always stay with me. It was not only a privilege to work with so many

people who loved their work, it was also an awful lot of fun.

My advisor Susan Graham gave me her support, advice, patience, encouragement, and

friendship. Most of all she believed in me, which helped me believe in myself.

I was lucky to have Kathy Yelick and Jon Arons on my committee. They not only

in
uenced my work, they also did so with such good humor that it was always a pleasure

to work with them. I was also greatly in
uenced by Jim Demmel, who was always a

gentleman and a scholar, in the most literal sense.

Oliver Sharp, Steve Lucco, Robert Wahbe, John Boyland, and Tim Wagner infected

me with their enthusiasm, inspired me with the quality of their work, and taught me about

\suesmanship".

At the IBM Watson Research Center, Shaula Alexander Yemini was �rst my colleague,

then my manager, and �nally my friend. Without her encouragement and her e�orts to

secure an IBM Resident Study fellowship for me, I might never have started this adventure.

I was also fortunate to receive continued strong support from Danny Sabbah and Michael

Burke, who \inherited" me after Shaula left IBM.

After my return to the Watson Research Center, Peter Sweeney contributed many

ideas and a lot of hard work that made its way into this dissertation. Mark Wegman and

Kenny Zadeck collaborated on the design of the Rapid Type Analysis algorithm. Harini

Srinivasan, G. Ramalingam, Mike Hind, Mike Karasick, Mauricio Serrano, Shahani Weer-

awarana, and Michael Burke all made many contributions to this work { conversations,

ideas, code, and written feedback.

Colleagues from around the world have also provided valuable feedback, data, bench-

marks, and (to my chagrin) corrections { in particular, Yossi Gil, Craig Chambers, Urs

H�olzle, Hemant Pande, and Brad Calder.

Other people who help me reach the �nish line are Ben Fried and Andrew Mayer, who

got me through some low points; Bill Hapworth, who helped me overcome my dissertation

paranoia; the members of the Cal Sailing Club, who kept me sane; and Mark Kennedy,

who goaded me until I swore he'd have to call me \doctor" one day.

x

My sister Sara and her partner Jennifer Balfour provided love, support, refuge and a

sense of family three thousand miles from home. My mother, Gertrud, and my father,

John, have always supported my education and gave me many gifts that went into this

work.

Finally, my wife Laura Bennett gave me unwavering support, love, and humor.

xi

Chapter 1

Introduction

1.1 Language and Optimization

Bjarne Stroustroup [1986] began his book on the C++ programming language with

this quotation from the linguist B.L. Whorf:

Language shapes the way we think, and determines what we can think about.

Object-oriented programming is a real step forward in the expressive power of program-

ming languages. A well-designed group of classes has a simplicity and conciseness that can

not be achieved with the traditional procedural languages of the Algol family. Object-

oriented languages help us to think about programming problems in a more modular,

exible manner.

But it is not only the language, but our experience of it, that shapes the way we think.

In spoken language, if a phrase does not communicate our ideas e�ectively, we simply

stop using it | �rst individually and eventually as a society. In a programming language,

if a feature is ine�cient, the feedback is less immediate | we often do not notice the

ine�ciency until we have already incorporated the feature into the critical portion of our

program.

The experience of the Taligent Corporation can be seen as an extreme example. Founded

by Apple and IBM to build an object-oriented operating system, Taligent's engineers

quickly discovered that performance issues severely constrained their ability to build mod-

ular, re-usable software. The ine�ciencies of object-oriented programming features played

a signi�cant part in the demise of the Taligent Corporation: hundreds of lost jobs, years

of wasted e�ort.

1

CHAPTER 1. INTRODUCTION 2

As a result of such experiences, certain language features become linguistic archaisms.

\Collective wisdom" dictates that programmers avoid such features, and while they con-

tinue to appear in the language speci�cation, and are studied at universities, they disap-

pear from common usage.

As programming languages become more and more high-level, optimization plays an

increasing part in shaping the way we think. Optimization will determine which high-level

features become part of everyday usage, and which features are relegated to obscurity.

1.2 Optimization of Object-Oriented Languages

In recent years, object-oriented languages have entered the mainstream. C++ and to a

lesser extent Smalltalk are widely used in industry; Java is the lingua franca du jour of the

Internet; and Modula-3, Ei�el, SELF, Dylan, and Cecil have gained a certain prominence

in commercial and/or academic spheres.

The pure object-oriented languages (for instance Smalltalk and SELF) in which ev-

ery operation, including integer addition, is a dynamically bound method invocation, are

inherently ine�cient unless signi�cant optimization is performed. Therefore, several opti-

mization techniques have been developed that are speci�c to the dynamic, untyped nature

of these languages: method caching, message splitting, and so on.

Progress in optimizing \impure" languages (such as C++, Java, and Modula-3) has

been slower for several reasons. First, the \impurity" is an attempt to solve e�ciency

problems in the language design, rather than in the optimizer, so there is less need for

optimization and less room for dramatic improvements. Second, because of the relatively

recent introduction and rapid acceptance of these languages, market pressures have been

more strongly focused on features and functionality than on performance. Finally, in the

case of C++, the complexity of the language led to a considerable delay before researchers

had true compilers with which to study proposed optimizations. The combination of these

factors has impeded e�orts to develop sophisticated optimizations for C++ and Java and

have left a signi�cant performance gap.

This dissertation shrinks that gap.

CHAPTER 1. INTRODUCTION 3

1.3 My Thesis

The most expensive and most useful features of statically typed object-oriented pro-

gramming languages like C++ and Java can be e�ectively optimized by a simple algorithm

that is extremely fast.

1.3.1 An Optimization Framework

This dissertation describes a new analysis algorithm, Rapid Type Analysis, and a

suite of optimizations that rely on the information it computes. The analysis computes

a conservative set of live functions and live classes for an object-oriented program. Live

functions are those that may be invoked during any execution of the program; live classes

are those that may be instantiated during any execution of the program.

The live class and live function sets are used to drive optimizations that convert dy-

namic method dispatches into statically bound dispatches, that convert virtual inheritance

to non-virtual inheritance, and that reduce or eliminate the cost of dynamic type inquiries

and type casts.

Although we have demonstrated experimentally that our analysis algorithm embodies

an excellent combination of accuracy and performance, many other analysis algorithms

can be substituted as long as they compute the live procedure and live class sets in a

conservative manner. Decoupling the analysis from the optimization is important because

there is a broad spectrum of analysis algorithms, from class hierarchy analysis [Dean et al.

1995] to
ow-sensitive and context-sensitive alias analysis [Pande and Ryder 1994]. The

low end of the spectrum o�ers very fast execution at the cost of limited precision; the high

end of the spectrum o�ers maximal precision at the cost of several orders of magnitude

increase in compile time and space.

A major contribution of this dissertation is the development of a common framework

for optimization of statically typed object-oriented languages, which allows di�erent anal-

ysis algorithms to be \plugged in" to a single compiler. This in turn allows a more

compact, modular implementation, reducing the cost of the compiler, and it allows the

trade-o�s between the various analysis algorithms to be computed in an \apples to apples"

comparison.

CHAPTER 1. INTRODUCTION 4

1.3.2 Optimization by Specialization

The features that distinguish the object-oriented languages from other programming

languages encourage modularity and reusability. Consequently, the biggest opportunities

for new optimizations consist essentially of undoing modularity (by in-lining) and undoing

re-usability (by specializing the code to a single application).

The best-known specialization is the conversion of dynamically bound (virtual, in C++

parlance) function calls into direct calls, thereby saving the dynamic dispatch overhead

and enabling further in-lining. Virtual function resolution is a primary focus of this disser-

tation. We describe how our algorithm, Rapid Type Analysis (RTA), can be employed for

virtual function resolution. We demonstrate through extensive measurements that RTA

is almost as e�ective as expensive algorithms such as alias analysis, and is signi�cantly

more e�ective than simple algorithms such as class hierarchy analysis. Yet RTA is only

marginally more complex to implement or costly in compile-time than class hierarchy

analysis.

We also describe other specialization algorithms that we believe will have similarly

excellent \price/performance" for conversion of virtual inheritance to non-virtual inher-

itance, and for compile-time implementation of run-time type identi�cation (RTTI) fea-

tures. We have not studied these optimizations experimentally because in C++ the fea-

tures are either infrequently used (in the case of virtual inheritance) or not yet imple-

mented in most compilers (in the case of RTTI). However, we expect that these features

will become more commonplace over time due to their expressive power. RTTI is used

extensively in Java.

The algorithms are all relatively simple and very fast. There is an unfortunate tendency

in our �eld toward developing algorithms that are unnecessarily complex and therefore

rarely used in practice. The depth of our work is not in the complexity of the algorithms,

but rather in the judicious balancing of simplicity, e�ectiveness, and speed and in the

experimental validation of our choices.

1.4 Scope of this Work

Where applicable, all algorithms are presented in this dissertation with variants for

both C++ [Stroustrup 1986] and Java [Gosling et al. 1996]. Adaptation to other statically

typed object-oriented languages should be relatively straightforward using either the C++

CHAPTER 1. INTRODUCTION 5

or the Java algorithm as a base. Such languages include Modula-3 [Harbison 1992], Ei�el

[Meyer 1992], Dylan [Feinberg et al. 1997], Oberon-2 [Mossenbock and Wirth 1991] and

Cecil [Chambers 1993], as well as the historically important languages Simula [Dahl and

Nygaard 1966; Birtwistle et al. 1973; Nygaard and Dahl 1978], MAINSAIL [Wilcox et al.

1978], and Object Pascal [App 1988]

Some algorithms may be adaptable to the dynamic object-oriented languages (such

as Smalltalk [Goldberg and Robson 1983] and SELF [Ungar and Smith 1987]), but the

adaptation will be more complex and there may be better algorithms speci�cally targeted

to such languages.

The Rapid Type Analysis algorithm and its dependent optimizations rely on having

an entire program or library available for analysis, or on the intermediate representation

including the necessary information (as described in Chapter 8). This means that these

optimizations can not be applied directly to Java systems that dynamically load code.

However, they can be applied to Java programs compiled in the traditional manner (class

�les contain su�cient information for RTA to analyze the program). There are already a

number of such \static" Java compilers [Seshadri 1997; Proebsting et al. 1997; Hsieh et

al. 1996; Cierniak and Li 1997; Bothner 1997].

All of the experimental work was done with C++. A colleague is implementing our

algorithm for Java and already has some preliminary results [Serrano 1997].

Our algorithms and implementation all handle the various arcane features of the C++

language. In particular: virtual base classes, pointer-to-member functions, templates,

and constructor semantics. This makes it possible for a compiler writer to use the algo-

rithms directly, instead of having to adapt the algorithms and deal with the real-world

complexities herself.

While the algorithms have broad relevance, the measurements may only be pertinent to

C++. There are some signi�cant di�erences between the object-oriented features of C++

andModula-3, for example. Extrapolation from the C++ results to other languages should

be done with care. Our benchmarking methodology was inspired by the SPEC benchmarks

for C and FORTRAN [Dixit 1991; Dixit 1992], but C++ is a much more complicated

language, and the programs vary more widely in their run-time characteristics. Therefore,

benchmarking C++ e�ectively may require a much larger set of benchmark programs.

Optimizations serve two functions: to make existing programs smaller and faster, and

to allow programmers to make more extensive use of high-level language features without

CHAPTER 1. INTRODUCTION 6

paying a large performance penalty. While our measurements address the former, in the

long run the latter e�ect is more important.

1.5 Contributions of this Dissertation

The contributions of this dissertation are:

� a fast, e�ective algorithm (Rapid Type Analysis) for computing the set of live pro-

cedures and live classes in an object-oriented program;

� a suite of optimizations that use the computed sets to resolve virtual function calls,

de-virtualize inheritance, and convert dynamic type inquiries and type casts into

compile-time expressions;

� an optimization framework that allows di�erent analysis algorithms to be used with

the optimization suite;

� measurements within that framework that compare the performance of several anal-

ysis algorithms for the purpose of virtual function call resolution, and that demon-

strate the superiority of RTA;

� common data structures and concise notation to describe all the algorithms;

The Rapid Type Analysis (RTA) algorithm is currently scheduled for inclusion in an

IBM product, and is being implemented by a number of other research groups in both

academia and industry.

1.6 Contributors

Experimental computer science is by necessity a collaborative discipline, and much of

the work described in this dissertation includes signi�cant contributions from other people.

Peter Sweeney did most of the dynamic measurements and was a co-author of the paper

that is incorporated in Chapter 5.

A variant of the Rapid Type Analysis algorithm described in Chapter 4 was developed

independently and almost simultaneously by Mark Wegman and Kenny Zadeck; the �nal

algorithm described here is a fusion of the best ideas from their algorithm and mine.

CHAPTER 1. INTRODUCTION 7

Harini Srinivasan did much of the design and implementation work for the Class Hier-

archy Graph described in Chapter 3, and G. Ramalingam also contributed some important

code.

1.7 Outline

Chapter 2 provides an overview of object-oriented program optimization, and places

our work in context. Chapter 3 describes the data structures used by the analysis and

optimization algorithms in the rest of the dissertation, and de�nes the terms and symbols

used throughout. The Class Hierarchy Graph (CHG) is an important data structure and

it must be understood to comprehend the RTA algorithm.

Chapter 4 describes the Rapid Type Analysis algorithm, which is used to provide the

information to the optimizations described in the subsequent three chapters. However,

other analysis algorithms can be used, and in this case it is only necessary to understand

the analysis framework described in the �rst section.

Chapters 5, 6, and 7 describe the optimizations that can be performed once a program

has been analyzed and dead classes have been identi�ed: virtual function resolution, base

class de-virtualization, and compile-time type identi�cation.

Chapter 8 describes how the RTA algorithm can be applied when the complete program

is not available to the optimizer, in particular when compiling and using libraries. Using

RTA in a traditional separate compilation architecture is also discussed.

The work of the dissertation is summarized in Chapter 9, along with suggestions for

future work in the area.

We have attempted to strike an appropriate balance between formality and complex-

ity. To assist the reader, all variables, functions, and predicates used throughout this

dissertation are de�ned in a symbol glossary in Appendix A.

Finally, Appendix B contains the data from the measurements that were used to pro-

duce the graphs in this dissertation.

Chapter 2

Related Work

This summary of related work will help to place our work in context, and provide a

brief overview of the �eld of optimization of object-oriented programs. Readers familiar

with the area may skip this chapter; more detailed discussions of related work will be

included in the relevant sections.

2.1 Studies of Object-Oriented Programs

There have been a number of studies of the performance of object-oriented programs.

Most of them have concentrated on statically typed languages, because in the pure dynam-

ically typed languages all other costs are dominated by the dynamic dispatch overhead.

2.1.1 Studies of C++ Programs

For C++, Calder et al. [1994] investigated the di�erences between the C SPEC bench-

marks and a set of their own C++ programs, and found that the C++ programs had

shorter procedures, and performed more calls and indirect calls than the C programs.

The C programs executed more conditional branches. The C++ programs issued more

loads and stores, had worse instruction-cache locality, and allocated far more objects on

the heap.

Driesen and H�olzle [1996] studied the cost of dynamic dispatch in eight C++ bench-

marks and found that the overhead for dynamic dispatch was a median of 8% and a maxi-

mum of 18%. The overhead in terms of machine cycles was almost double the overhead in

instructions, due to low instruction-level parallelism in dynamic dispatch code sequences.

8

CHAPTER 2. RELATED WORK 9

They also investigated the e�ects of varying the branch mis-prediction penalty, branch

target bu�er size, load latency, and instruction issue width.

Wu and Wang [1996] studied the performance of a number of variations of a C++

implementation of the quicksort algorithm. The potential optimizations they identi�ed

were allocating small objects to registers, eliminating o�set calculations in the absence of

multiple inheritance (see Section 7.6), and static binding of types (in other words, type

analysis).

2.2 Type Inference

Object-oriented programming derives much of its power from allowing one method to

apply to many types. However, this is also one of the major sources of performance prob-

lems: because the type of the objects is not known, less optimization can be performed.

The problem is most severe in dynamic, untyped languages such as Smalltalk, and least

severe in statically typed languages such as C++.

Type inference is the process of inferring type declarations like those that would be

present in a statically typed language by analyzing a program. Early work by Morris

[1968] on the Lambda calculus and Reynolds [1969] on Lisp was made practical by Milner

[1978] by using a fast uni�cation algorithm. With a �nite domain of types, a lattice-based

data-
ow technique can be applied [Jones and Muchnick 1976; Kaplan and Ullman 1980;

Tennenbaum 1974].

Unfortunately, in the realm of object-oriented program analysis, the term type inference

has been used in a number of di�erent ways. Most important is the question of what is

being used as the basis of the inferences. In dynamically typed languages, the basis for

inference is method invocations: if the method bar is applied to object foo, then it is

assumed that the dynamic type of foo is one of the classes that has a bar method.

However, foo might sometimes refer to an object without a bar method. Since many

dynamically typed languages de�ne a semantics for such a case (either a \no such method"

method is invoked or an exception is raised) it is possible to write correctly functioning

programs which contain type errors. In fact, the programmer may have written the code in

such a way that he knows that the line of code invoking the bar method is never executed.

We use the term type analysis to refer to algorithms that use type declarations to

provide the basic information about object types, and type inference to refer to algorithms

CHAPTER 2. RELATED WORK 10

that use method invocations as a basis.

Note that the results from a type inference algorithm can still be used to drive opti-

mization of method invocations, as long as a dynamic test is included to verify the actual

type.

2.2.1 Type Inference for Dynamic Languages

Suzuki [1981] developed an early type determination algorithm for Smalltalk-76 by

extending Milner's algorithm.

Much of the recent work on type inference can be traced back to a constraint-based

algorithm by Palsberg and Schwartzbach [1991] designed for a simple dynamic object-

oriented language without aliasing. Their algorithm su�ered from imprecision because

each method was only analyzed once, leading to \pollution" of the type information in a

caller by the types from other callers of the same method. The imprecision can be reduced

by uniquely analyzing each method at each call site (e�ectively cloning the method for

each call site). However, multiple levels of the call graph must be \cloned", leading to

combinatorial explosion. The resulting algorithms are impractical.

Agesen et al. [1995] ameliorated this problem with an adaptive algorithm that only

expands call chains that are likely to yield greater precision. Plevyak and Chien [1994]

also developed an iterative algorithm with improved precision and speed.

Agesen [1995] improved on the precision of his previous work with his Cartesian Product

Algorithm, which analyzes the Cartesian product of the possible argument types of a

method. His algorithm was able to correctly infer the types of a factorial function but

took nine seconds to do so, and is therefore impractical for real programs.

Palsberg and his colleagues have also continued to study and make re�nements to their

original algorithm [Schwartzbach 1991; Kozen et al. 1994; Palsberg and Schwartzbach

1994b; Palsberg and Schwartzbach 1995].

2.2.2 Type Analysis for Static Languages

Type analysis for statically typed object-oriented languages has developed from an

entirely di�erent background of interprocedural alias analysis.

The �rst such work was by Pande and Ryder [1994; 1995; 1996] for C++, based on the

alias analysis algorithm of Landi and Ryder [1993] for C. Carini et al. [1995] also developed

CHAPTER 2. RELATED WORK 11

a type analysis algorithm for C++ based on that of Burke et al. [1994], and Steensgard

[1996a] has developed a type analysis algorithm based on his almost-linear time algorithm

for points-to analysis [Steensgaard 1996b].

2.2.3 Fast Algorithms

The information in statically typed programs makes it possible to do some type analysis

by analyzing only the class hierarchy and call graph of the program. Calder and Grunwald

[1994] �rst applied such an approach to C++ with their Unique Name algorithm, which

resolves methods when their type signature is globally unique.

Fernandez [1995] and Dean et al. [1995] implemented versions of Class Hierarchy Anal-

ysis applied to Modula-3 and Cecil, respectively. Class Hierarchy Analysis resolves calls

for which there is only one type-correct method in the class hierarchy, and is strictly

more precise than Unique Name. Porat et al. [1996] compared Unique Name with pro�le-

directed type feedback (see below) for C++ programs, and Diwan et al. [1996] compared

Class Hierarchy Analysis with several intra- and inter-procedural
ow-based analyses.

All of these algorithms are essentially constructing a call graph, and are therefore re-

lated to call graph construction algorithms for procedural languages [Ryder 1979; S�udholt

and Steigner 1992].

Our Rapid Type Analysis algorithm [Bacon and Sweeney 1996] is similar to these

algorithms, and is strictly more precise than Class Hierarchy Analysis.

2.3 Eliminating Dynamic Dispatch

In addition to type analysis, there are two major techniques for reducing the frequency

of dynamic dispatch: cloning and type prediction. Cloning generates multiple versions of

methods that are specialized to parameter types, and type prediction inserts a fast test

for the most likely type or types before defaulting to dynamic dispatch.

The SELF and Cecil projects have investigated these optimizations individually and

together in the context of pure object-oriented languages [Ungar et al. 1992; H�olzle and

Ungar 1994; H�olzle 1994; Chambers and Ungar 1991b; Chambers et al. 1991b; Dean et al.

1996].

CHAPTER 2. RELATED WORK 12

2.3.1 Cloning

Cloning is the creation of duplicate function bodies specialized to the types or values

of one or more arguments. A form of partial evaluation, particular types of cloning in an

object-oriented context have been called customization and specialization.

Unrestricted cloning usually leads to an exponential increase in code size. Methods

for addressing this problem have been put forward in the context of procedural language

compilation [Cooper et al. 1993] and partial evaluation [Jones et al. 1993; Ruf and Weise

1991; Weise et al. 1991].

In object-oriented programs, the simplest type of cloning is customization: a specialized

version of a method is compiled for each class that inherits it [Chambers and Ungar 1989a].

If the cloned method performs any self-dispatches, they can be statically bound because

the type of the self or this pointer is statically known. For SELF, Chambers [1992]

found that customization sped programs up by a factor of 1.5 to 5.

The term specialization has been used for cloning that may be based on the type of

any of the parameters of a method, instead of just the receiver type as in customization.

Dean [1994] has shown that specialization can improve performance of Cecil programs,

and that increases in compile-time and code size can be limited e�ectively by using pro�le

information to guide the specialization process [Dean et al. 1995].

Plevyak and Chien [1995] implemented a more general cloning algorithm for Concurrent

Aggregates. Their technique is based on partitioning the program into equivalence classes

by �xed-point iteration, and requires a modi�cation to the method dispatch mechanism

(because the types and values at the call site e�ectively become additional parameters).

They tested their technique on ten small Concurrent Aggregates programs and found that

the number of dynamic dispatches and the number of calls dropped considerably (there

are fewer calls because of inlining). Code size increased as much as 70%, and no speedup

�gures were given.

Closely related to cloning is message splitting [Chambers and Ungar 1991a], which only

replicates part of a method body rather than replicating the entire method. The purpose

of message splitting is to reduce the loss of type information caused by merges in control

ow, thereby allowing more methods to be directly dispatched.

CHAPTER 2. RELATED WORK 13

2.3.2 Type Prediction

Type analysis and cloning both attempt to resolve method dispatches statically through

program analysis. When this is impractical, either due to the cost of the static analysis

or the unavailability of the whole program, signi�cant optimization is still possible if the

compiler can predict, by static analysis, pro�ling, or caching, the most likely class of the

object.

Type prediction can also be used in conjunction with type analysis in dynamic envi-

ronments (as for Java), where the class hierarchy may change in the future but is unlikely

to do so. The types obtained from type analysis are used as predictions rather than

certainties.

Static prediction was used in the SELF compiler [Chambers and Ungar 1989a]: when

the receiver types of certain frequently used operators were not resolved by customization,

they were predicted. For instance, the receiver of a \+" message was predicted as type

integer and the receiver of an ifTrue message was predicted to be of type boolean.

Grove et al. [1995] studied pro�le-directed type feedback and found it to be highly

e�ective. Agesen and H�olzle [1995] compared type inference to pro�le-directed type feed-

back, and found them to be similar in their run-time bene�ts with the exception that type

inference often did not resolve calls to frequently used operators like \+".

A third mechanism for type prediction is inline caching [H�olzle et al. 1991]. When a

method is dispatched dynamically, the target method is compiled as though it were being

inlined into the context of the caller, and the call site is patched to jump to a stub that

conditionally executes the inlined code based on the type of the object. Simple inline

caches only keep a single inlined method body, and may thrash at heavily polymorphic

call sites. H�olzle et al. show that it is almost always better to employ a polymorphic inline

cache, which tests the alternatives in sequence. Code explosion and de-optimization can

be limited e�ectively by bounding the number of inlined methods.

2.3.3 Designing Dynamics out of the Language

A variety of approaches have been taken in language design to reduce dynamic poly-

morphism and increase run-time e�ciency. The statically typed languages such as C++

can be seen as an example of this approach. C++ forces the programmer to declare

explicitly which methods will be dynamically dispatched (virtual functions) and which

CHAPTER 2. RELATED WORK 14

base classes will be found dynamically (virtual base classes).

The use of template-style mechanisms [Stroustrup 1989; Ellis and Stroustroup 1990;

Lea 1990; Bank et al. 1996] is a further attempt to reduce dynamic binding and to improve

compile-time checking. Often the code for a class, such as List, only exhibits parametric

polymorphism rather than true polymorphism. That is, any type of object can be stored

in a List, but all lists only contain one type of object. In this case, the parametric poly-

morphism can be declared by the programmer and the compiler will generate specialized

versions of the classes based on their type parameters.

Templates are, in one sense, a mechanism that allows the programmer to perform

cloning manually. They su�er similar problems of code expansion, most notoriously for

container classes like List, where it is often unnecessary to generate separate method

bodies for each type of pointer that the list can contain. However, templates have the

advantage that they provide more static checking, because when an object is removed

from a container class its type is statically known.

Trying to solve the same problem from the other direction, some researchers tried

adding declarative type information to dynamic languages like Smalltalk. Ballard et al.'s

QUICKTALK system implemented a type-checked subset of Smalltalk [Ballard et al. 1986].

The Hurricane [Atkinson 1986] and Typed Smalltalk [Johnson 1986; Johnson et al. 1988;

Graver 1989; Graver and Johnson 1990] projects developed type declarations for Smalltalk

and showed how they could be used by an optimizer to achieve substantial speedups. The

Cecil language [Chambers 1993] continues in this tradition.

2.4 Reducing Code Size

Most of the work on type analysis has concentrated on using the computed type in-

formation for reducing dynamic dispatch. However, by constructing a call graph, it is

also possible to remove unused methods. This is particularly important for the pure,

dynamically typed languages like Smalltalk and SELF which include a large interactive

programming environment, because when delivering a stand-alone application one does

not want the entire programming environment gratuitously included in the executable.

Agesen and Ungar [1994] use type inference to address this problem in SELF by creating

an application extractor. Srivastava developed a specialized algorithm similar to a call

graph construction algorithm, which he used to identify and remove dead code from C++

CHAPTER 2. RELATED WORK 15

programs.

Our Rapid Type Analysis algorithm, because it builds a call graph, can also remove

unused functions.

Chapter 3

Data Structures

While statically typed object-oriented languages such as C++ provide programmers

with a number of features that improve the
exibility and extensibility of their software,

the overhead of implementing these features can be very expensive, as was discussed in

Chapter 2. There is a lot of on-going and earlier work in the area of compiler optimiza-

tion of object-oriented programs, aimed at improving the performance of these programs

[Carini et al. 1995; Pande and Ryder 1994; Chambers et al. 1991b; Chambers and Ungar

1991a; Agesen and H�olzle 1995; H�olzle et al. 1991; Plevyak and Chien 1994; Diwan et

al. 1996]. While these papers present interesting new ideas and algorithms for optimizing

object-oriented programs, there has been very little focus on improving the performance

of these optimization algorithms and very little mention of the algorithms to build the

data structures used to implement these optimization algorithms.

Traditionally, for imperative programs such as C and Fortran, compiler optimization

algorithms have been developed using very e�cient intermediate representations of the

source code. Some of these representations have found their way as data structures in

several commercial compilers. The Static Single Assignment form [Cytron et al. 1991],

for example, has proven to be a very powerful platform for several code optimizations

implemented in most modern compilers for C and Fortran. These intermediate repre-

sentations primarily represent the control
ow and data
ow information in imperative

programs. While some of these intermediate representations can be e�ective in compilers

for object-oriented languages, they do not represent the information on object-oriented

features available in these languages. The focus of the work presented in this dissertation

has been development of e�cient intermediate representations (data structures) to repre-

16

CHAPTER 3. DATA STRUCTURES 17

sent such features. These intermediate representations can serve as e�cient platforms for

several object-oriented analyses and optimizations proposed in the literature.

One of the most important data structures necessary to optimize any object-oriented

program is a graph that represents the class hierarchy and the method inheritance relation-

ships in the program. This chapter describes such a data structure, the Class Hierarchy

Graph (CHG), and a fast algorithm to compute it. One of the most important uses of

the CHG is to compute the Program Virtual-call Graph (PVG). The PVG is a variant of

the traditional call graph used in compilers for C and Fortran, extended to include C++

features such as virtual functions, pointer-to-member functions, etc. We have found the

CHG and the PVG to be fundamental data structures for a variety of optimizations of

object-oriented language features.

Set-theoretic notation will be used to present the data structures, so that the algorithms

can be described concisely. The judicious linking of objects by pointers removes the need

for most of the expensive-seeming operations in the actual implementation.

3.1 The Class Hierarchy Graph

In statically typed object-oriented languages, a class D can be derived from another

class B; B is called the base of the derived class, D. A derived class inherits the properties

of the base class, including the data members and member functions. The derived class

can also override the functions of its bases. We use the Class Hierarchy Graph (CHG) to

represent the inheritance relationships between classes. The Class Hierarchy Graph also

represents the various member functions (including virtual functions) inherited, overridden

or de�ned in each class. In this section, we present a formal de�nition of the CHG and

illustrate the CHG using an example. In Section 3.1.1, we describe algorithms to build

the CHG. Section 3.2 discusses the application of the CHG to computing sets of inherited

and overridden methods, which are crucial for subsequent analyses.

A Class Hierarchy Graph is a tuple < C;D; V > where

� C is the set of classes, which form the nodes of the graph,

� D is the set of derivations, which are ordered pairs of classes forming the edges of
the graph,

� V is the set of visible methods, which are tuples that represent the methods that can
be invoked through a reference to an object of a particular class type.

CHAPTER 3. DATA STRUCTURES 18

L

N

KJ

M

O

P

N O

P

L

KJ

M

(a) Derived*(M) (b) Bases*(M)

Figure 3.1: Illustration of Derived� and Bases� with respect to class M in the CHG.
Shading denotes that the class is part of the set.

A derivation edge in D is an ordered pair < b; d > where b 2 C is the base class and

d 2 C is the derived class. Thus, the set of class nodes and the set of derivation edges

represent the inheritance relationships in the class hierarchy. Note that unlike the standard

C++ representation, in our representation, inheritance arcs, i.e., derivation edges,
ow

from the base class to the derived class. This is because most traversals during program

analysis and optimizations go down the class hierarchy (traversing the base classes before

the derived classes), rather than up1. In the presence of multiple inheritance, a class

node can have multiple immediate predecessors (parents) in the CHG. We refer to the

in-degree of a class node in a CHG as the degree of inheritance. Class nodes whose degree

of inheritance is zero are referred to as root nodes.

The set of base classes of a class c is denoted Bases(c). Formally, Bases(c) = fb 2

C : < b; c >2 Dg. Similarly, the set of classes derived from class c is denoted Derived(c),

where Derived(c) = fd 2 C : < c; d >2 Dg.

We frequently make use of the set of transitively derived classes or transitively inherited

classes of a class. We de�ne Derived�(c) as the set of class nodes d 2 C, including c itself,

such that there is a path from c to d in the CHG. Similarly, we de�ne Bases�(c) as the set

1To facilitate traversals in either direction, in our implementation, we have bidirectional edges between

nodes in the CHG.

CHAPTER 3. DATA STRUCTURES 19

of class nodes d 2 C, including c itself, such that there is a path from d to c in the CHG.

These concepts are illustrated in Figure 3.1.

Let MD be the set of all methods with code bodies de�ned in a program; let MI be

the set of all method interfaces introduced in a program (in C++ terms, the pure virtual

methods; in Java terms, the abstract methods). The set of all methods M = MD [MI

includes both concrete methods with code bodies as well as method interfaces without

code bodies.

The set of visible methods, V , is the set of methods and interfaces that a class declares

or inherits, for all classes c 2 C. The visible methods are computed according to the

particular inheritance and override semantics of the source language. Formally, a visible

method v 2 V is a tuple < c;m; d > where

� c 2 C is the class in which v represents a visible method,

� m 2M is the method which is declared or inherited by c, and

� d 2 C is the de�ning class of m. Either c = d (the method is declared by the class,

not inherited), or c 2 Derived�(d) (the method is inherited from a base class).

The set Vc = fm 2 M;d 2 D : < c;m; d >2 V g represents the set of methods that

are de�ned for class c. This includes both the actual methods with code bodies m 2MD

that c de�nes or inherits, as well as the interfaces n 2 MI that c de�nes or inherits. In

the next section we will show how the set V is constructed from the input program.

Example Consider the C++ program in Figure 3.2. The CHG for this program is given

in Figure 3.3. Nodes w, x, y, z and u represent class nodes. Within each class node

are the visible method subnodes corresponding to each method visible in that class. For

example, methods x::g and z::f are visible in class node z. The next subsection presents

an algorithm to construct these visible method subnodes.

For readers unfamiliar with C++, the use of virtual inheritance along CHG edges

< w; y > and < w; x > in the above example indicates that objects of type u should only

contain a single sub-object of type w, instead of one for each of the two paths along which

it was inherited.

CHAPTER 3. DATA STRUCTURES 20

class w {

virtual void g() { ... };

};

class x : public virtual w {

virtual void g() { ... };

};

class y: public virtual w {

};

class z : public x {

virtual void f() { ... };

};

class u : public y, public z {

void f() { ... };

};

Figure 3.2: A group of C++ class declarations

u::f

w

w::g

x
x::gy

w::g

z

x::g z::f

u

x::g

Figure 3.3: Class Hierarchy Graph of Program in Figure 3.2. Edges < w; y > and < w; x >

are virtual inheritance edges.

CHAPTER 3. DATA STRUCTURES 21

3.1.1 Building the CHG

The class nodes and derivation edges of the CHG for a C++ program are constructed

from source-level information, i.e., from the class declarations and the inheritance rela-

tionships speci�ed in the program. In this section, we present an algorithm (Figure 3.4)

to compute the set of methods visible at any class node, given the methods declared in

each class node. Since any method visible in a base class node is also visible in a derived

class node, the algorithm in Figure 3.4 processes nodes in the CHG in topological order.

Algorithm assignTopologicalNumbers(C) assigns topological numbers, TopNum, to

the class nodes in C such that the TopNum of a node is always greater than the TopNum

of all its parent nodes, and the TopNum of an implementation class is always greater than

the TopNum of an interface class that is its sibling. Topological numbers are assigned

sequentially beginning with 1, and each class has a unique topological number.

At a root node the set of visible methods is simply the set of methods declared in the

node. At all other nodes, the set of visible methods is the union of the methods declared

in the current node and the methods visible in its parent nodes.

Since the CHG can potentially be a directed acyclic graph, we have to consider mul-

tiple paths along which di�erent methods with the same signature may be declared. For

example, in Figure 3.3, method g() is de�ned in nodes w and x. If while processing node

u, in line 9 of Algorithm buildCHG, derivation edge < y; u > is considered before edge

< z; u >, the visible method < u; w :: g; w > is added to V . However, the method reaching

u is x::g. Lines 10-13 of Algorithm buildCHG uses the signature information to handle

this case. The signature of a method m, Sig(m), is essentially the name of the method and

its type. If the signatures of a method visible in a parent node and a method computed to

be visible in the child node match, we use the topological number of the de�ning classes

in the two visible methods to determine which of the two methods is visible in the child

node. If in line 11, TopNum(d) > TopNum(e), then, the method de�ned in d overrides

the method in e. Hence, the method visible in class c must be the method de�ned in

d. Using this technique, for our example CHG, the visible method set, V , is updated as

follows: since TopNum(x) > TopNum(w), < u; w :: g; w > is removed from the list and

< u; x :: g; x > is added instead.

What about the case when two base classes a and b of a class c both de�ne a method

with the same signature, but neither one is a base of the other? In C++, class c would be

ambiguous and therefore illegal unless it explicitly overrode the method. In Java, either

CHAPTER 3. DATA STRUCTURES 22

1 buildCHG(C;D;M)
2 V ;
3 assignTopologicalNumbers(D)
4 for each m 2M
5 V V [f< ClassOf (m);m;ClassOf (m) >g
6 for i = 1 to jCj
7 Let c x 2 C : TopNum(x) = i

8 for each b 2 C : < b; c >2 D
9 for each m 2M;d 2 C : < b;m; d >2 V and not Private(m)
10 if 9n2M;e2C : < c; n; e >2 V and Sig(m) = Sig(n)
11 if TopNum(d) > TopNum(e)
12 V V � f< c; n; e >g
13 V V [f< c;m; d >g
14 else

15 V V [f< c;m; d >g

Figure 3.4: Algorithm to Construct the Class Hierarchy Graph

both methods are interfaces and it does not matter which one is chosen, or else one is a

method implementation and the other is an interface (since Java does not have multiple

inheritance). In this case, the implementation method will be chosen because the interface

method will have the lower topological number.

3.1.2 Complexity

In this section we analyze the worst-case and expected-time complexity of the CHG

construction algorithm. Throughout this dissertation we will abuse notational convention

by writing O(X) for O(jXj).

For worst-case complexity bounds we will assume that set and mapping data structures

are implemented with a data structure that allows insert and delete operations to be per-

formed in O(log n) time, where n is the size of the set. In our expected-time complexity

bounds (as in our actual implementation) we assume that sets and mappings are imple-

mented with hash tables that have O(1) expected time for insert and delete operations,

but a worst case time of O(n).

Building the CHG consists of two steps: assigning the topological numbering, and

adding the visible function entries. The topological numbering is created in O(C + D)

worst-case time using a standard work-list algorithm.

CHAPTER 3. DATA STRUCTURES 23

The if clause in the innermost loop compares function signatures. This can be done in

constant time if function signatures are represented by unique numbers. In our compiler,

unique numbers are generated for each function signature, and these numbers are used even

when generating non-optimized code, so we do not count the cost in our total complexity.

However, the cost of building the set of unique signatures is O(M logM) worst-case time.

The other operations performed in the inner loop are insertions and removals into the

set V . In the implementation, the set V is implemented as disjoint sets residing at each

class node. That is, the node for class c contains the subset Vc = fm 2 M;d 2 D : <

c;m; d >2 V g. There are at most three lookup/remove/insert operations in the inner

loop, and each operation will cost O(log Vc) worst-case time.

Thus the total worst-case cost of lines 10{15 in Figure 3.4 is O(log Vc), since the set

lookup, removal, and insertion can each be performed in that amount of time.

Now we must account for the loops. The loop on line 9 iterates over the functions of

the base classes of c. For any base class b of class c, every function in its visible function

set Vb must be either inherited or overridden in Vc. Thus jVcj is an upper bound on the

number of iterations by the loop on line 9. The number of iterations by the loop on line

8 is the number of classes from which c inherits, that is, the degree of inheritance. We

denote this quantity as jBases(c)j. The total number of steps in the algorithm can now

be expressed as

O

 X
c2C

Bases(c)Vc log Vc

!

We now observe that if we use the maximum values of the number of base classes

B = max
c2C
jBases(c)j

and the number of visible methods for a class

M = max
c2C
jVcj

then we can rewrite the worst-case running-time equation as

O

 X
c2C

BM logM

!

which is equivalent to

O(CBM logM):

CHAPTER 3. DATA STRUCTURES 24

Expected Complexity

All of the complexity bounds in this dissertation su�er from a common problem: worst

case numbers assume that the class hierarchy can be an arbitrary DAG, with classes

inheriting thousands of other classes, de�ning millions of methods, etc. In practice, the

fact that the class hierarchy is structured to conform to the functional relationships of

objects means that such class hierarchies will never exist in practice.

Unfortunately, it is di�cult to capture this observation formally. Therefore, it is im-

portant to keep track of which complexity terms are bounded in practice so that attempts

at optimization are directed at those complexity terms which really would grow with the

size of the input.

The multiplier logM accounts for the set lookup operations in the inner loop. However,

if the sets Vc in each class are implemented with a hash table, then the expected time to

perform a lookup will be constant.

Practically speaking, the degree of multiple inheritance B is almost never larger than 4,

since this would imply an extremely complex relationship between objects which would be

confusing to programmers. Therefore, B can essentially be regarded as a small constant.

As a result of these two simpli�cations, the expected-case running time of the algorithm

is improved to

O(CM):

While the maximum number of methodsM visible at a class is in some real cases in the

hundreds, the average number of visible methods at a class is usually not very large, as

we will show in Section 3.3.

Finally, it should be noted that the visible method information must be computed to

compile the method dispatches in the program, so in this sense the CHG construction

does not impose any additional cost.

3.1.3 Adapting the CHG for Java

While Java only has single inheritance of implementation, it does have multiple inher-

itance of interfaces. It is therefore not signi�cantly di�erent from C++ in terms of the

complexity of the class hierarchy.

The only adjustments necessary to the algorithm have to do with the peculiar way in

which Java de�nes the inheritance semantics of the Object class. Any implementation

CHAPTER 3. DATA STRUCTURES 25

class which does not extend some other implementation class implicitly extends the Object

class. On the other hand, interface classes do not share a common root class. Nevertheless,

any of the methods of the Object class can be invoked on a reference to an interface type.

This is justi�ed by the fact that every interface must point to an instance derived from

class Object.

It is unclear why the designers of Java chose this inelegant solution when they could

have simply created an ObjectInterface type which roots the interface hierarchy, and

then have Object be derived from ObjectInterface. One possible reason is that not all

methods of Object are public, and all methods of interface classes are implicitly public.

The way to deal with this peculiarity is simply to have Object be an implicit base

class of all interface classes that do not extend some other interface. Once this is done,

the visible method information will be correctly propagated through the CHG. There

are indications that the language designers sometimes use this approach themselves: the

javadoc tool, which automatically generates class documentation, shows all interfaces as

being derived from class Object.

3.2 The Override Frontier

Statically typed object-oriented languages allow a method in class c to be overriden

by another method of the same signature in a derived class d. The set of classes that

override a particular class's method, the Override set, and the set of classes that inherit a

particular class's method, the Inherit set, are used in a number of analysis and optimization

algorithms.

Conceptually, for a particular visible method, v =< c;m; d >, the Inherit and Override

sets determine a frontier (boundary) in the CHG for the visible method. Such a frontier

separates the nodes in the CHG that inherit the method m from the nodes in the CHG

that inherit or de�ne a di�erent method n 6= m such that Sig(m) = Sig(n). We refer to

this frontier as the override frontier.

The algorithm buildFrontier is essentially propagating back up the class hierarchy

information about what the buildCHG algorithm propagated down the class hierarchy.

The result is a kind of sparse evaluation graph for inheritance relationships: the override

set of a visible method \points" to all of the classes in which it is overridden. Since the

visible method represents the static type of a virtual function call site, recursively visiting

CHAPTER 3. DATA STRUCTURES 26

Visible Method Override Inherit

< w; w :: g; w > fxg fw,yg
< y; w :: g; w > fug fyg
< x; x :: g; x > ; fx,z,ug
< z; x :: g; x > ; fz,ug
< z; z :: f; z > fug fzg
< u; x :: g; x > ; fug
< u; u :: f; u > ; fug

Figure 3.5: Visible Methods for Example Program

override frontier

w

w::g

x
x::gy

w::g

z

x::g z::f

u

x::g u::f

Figure 3.6: Class Hierarchy Graph showing Override Frontier of w::g

its override sets yields the set of methods that could be dynamically invoked at that call

site.

While the Override set helps to �nd possible methods, the Inherit set helps to �nd

possible classes. Assume that we have already used the Override sets to �nd the set of

methods that could be invoked at a virtual call site. Then the set of classes through which

each method could be invoked is given by the Inherit set at each of those visible methods.

Consider our example program, whose CHG is shown in Figure 3.3: the visible method

subnodes are expanded in the table in Figure 3.5. For visible method < w; w :: g; w > in

class node w, the Override set is fxg and the Inherit set is fw,yg. The override frontier is

given in Figure 3.6. Class nodes w and y on one side of the frontier inherit the method

w::g. The nodes on the other side of the frontier, x, y and u, instead de�ne or inherit a

CHAPTER 3. DATA STRUCTURES 27

di�erent implementation of g(), namely x::g.

The Inherit and Override sets are used in the Program Virtual Call Graph construction

algorithm described in Section 3.4. The Inherit and Override sets can also be used to

resolve virtual function calls to direct function calls. For example, in our example program,

class x de�nes function g(). Since none of the descendants of x in the CHG override g(),

any virtual function call of the form, p ! g(), where the static type of the object that p

points to is x can be resolved to x::g.

Computing Override and Inherit Sets

The computation of the Override and Inherit sets proceeds in reverse topological order,

i.e., visiting derived class nodes (child nodes) before base class nodes (parent nodes)

in the CHG. The algorithm to compute the Inherit set (Inherit) and the Override set

(Override) for all visible method subnodes in the CHG is shown in Figure 3.7. Since

there are no descendants for a leaf node, any method visible in a leaf node, l, can not

be overridden. Likewise, there are no descendants of l that can inherit any of its visible

methods. Therefore, for all visible methods in a leaf node, l, the Inherit set is flg and the

Override set is ;. Lines 2-5 initialize the Inherit and Override sets for all visible methods.

Line 6 initializes the Antiset of each visible method. The Antiset is required for class

hierarchies in which a method is overridden by inheritance rather than by de�nition, as

is the case with the method g() in Figure 3.6. At class u, w::g() is overridden by

x::g(), which is inherited. However, class u does not belong in Override(w), because it

already contains x, which accounts for the override by method x::g() (see Figure 3.5).

Essentially, the Antiset is used to detect and remove redundant override entries caused

by class hierarchies with multiple paths between classes. The Antiset is a temporary data

structure that is not used beyond the frontier computation.

The loop on line 7 processes class nodes in reverse topological order (from the leaves to

the roots). For each node c processed in this loop, we examine each of the visible methods

of class c (line 9). We visit each of the parent classes b of class node c in the CHG (line 11),

and update their Inherit and Override sets (lines 12{25). At a parent node, b, Inherit(w)

and Override(w) sets for a visible method, w, are computed based on the corresponding

sets in its child node c. To understand the algorithm, the diagram in Figure 3.8 may be

helpful.

Line 12 checks whether the base class b has a visible method with the same signature

CHAPTER 3. DATA STRUCTURES 28

1 buildFrontier(C;D; V)
2 for each v 2 V
3 Let < c;m; d >= v

4 Override(v) ;
5 Inherit(v) fcg
6 Antiset(v) ;

7 for i = jCj to 1 step -1
8 Let c x 2 C : TopNum(x) = i

9 for each m 2M; d 2 C : < c;m; d >2 V
10 Let v =< c;m; d >

11 for each b 2 C : < b; c >2 D
12 if 9n2M; e2C : < b; n; e >2 V and Sig(m) = Sig(n)
13 Let w =< b; n; e >

14 if d = e

15 Inherit(w) Inherit(w) [Inherit(v)
16 Override(w) Override(w) [Override(v)
17 else

18 Override(w) Override(w) [fvg
19 if c 6= d

20 for each p 2 C : < p; c >2 D and < p;m; d >2 V
21 Antiset(p) Antiset(p) [fvg
22 Antiset(w) Antiset(w) [Antiset(v)
23 q = Override(w) \Antiset(w)
24 Override(w) Override(w)� q

25 Antiset(w) Antiset(w) � q

Figure 3.7: Algorithm to Compute Inherit and Override Sets

Class b

w = < b,n,e >

Class c

v = < c,m,d >

Class p

Figure 3.8: Illustration of Frontier Algorithm

CHAPTER 3. DATA STRUCTURES 29

as visible method v of class c. If there is not, then we simply move on to the next base

class. If there is, the visible method of base class b is denoted by w.

Line 14 of the algorithm checks whether the de�ning classes (d and e) of the two

visible methods are the same. If they are, then class c is inheriting v from class b. In that

event, the contents of the Inherit and Override sets of class c are simply added to the

corresponding sets in the base class b (lines 15 and 16).

If d 6= e, then visible method v in class c is overriding visible method w of base class b.

In that event, the Override set of b is updated to include v, but no Inherit information is

propagated to b (line 18).

The rest of the algorithm (lines 19{25) is only required to handle \sibling overrides",

which do not occur very often in real programs (we were unable to �nd any real programs

that made use of this feature). However, sibling overrides can occur, as in Figure 3.6

where the g() method de�ned by class x overrides the g() method of its sibling y at class

u.

In the event that there are sibling overrides, there will be override entries in the siblings

that should not be propagated to their parents. The Antiset at each visible method is

used to handle this case.

If c 6= d, then visible method v has been inherited from some sibling of class b and is

overriding visible method w (line 19). In that event, v is added to the Antiset of each

base class p of c from which the overriding method was inherited (lines 20 and 21).

Lines 22{25 propagate the Antiset to the base class b, whether v was inherited or

overridden. Any visible methods that were in the Antiset of class c are removed from

both the Antiset and the Override set of the base class b.

Complexity

We now present the time complexity of Algorithm buildFrontier. The initialization

phase, lines 3{6, requires constant time for each visible method. Hence, the complexity of

the loop in line 2 is O(V).

Since they are sets of classes, the maximum size of each Antiset , Inherit , and Override

set is C. The insertion of a single element on lines 18 and 21 therefore takes O(logC) time.

The set union, intersection, and di�erence operations on lines 15{16 and 22-25 could each

require as many as C insert, lookup, or delete operations, and therefore require O(C logC)

time.

CHAPTER 3. DATA STRUCTURES 30

The loop on line 20 iterates Bases(c) times, so the total cost of the loop of lines 20{

21 is O(Bases(c) logC). Line 12, which looks up the method m in the base class, costs

O(log Vb) which can be bounded by O(log Vc).

Therefore, the total cost of the loop body of lines 12{25 is

O(log Vc +Bases(c) logC + C logC):

We also observe that Bases(c) is always dominated by C, so the middle term can be

dropped. The loops on lines 7 and 9 together iterate over all of the visible methods,

and the loop on line 11 iterates Bases(c) times. Therefore, the complexity of the entire

algorithms can be expressed as:

O

0
@ X
<c;m;d>2V

Bases(c)(log Vc + C logC)

1
A

We have de�ned B andM be the maximum values over all classes c 2 C for jBases(c)j

and jVcj respectively. Therefore, the time complexity is:

O(V B(logM+ C logC)):

Expected Complexity

If the Override and Inherit sets are represented as hash tables, the logarithmic factors

for the lookups can be dropped.

The factor B represents the degree of inheritance of a class node. As mentioned earlier,

B can be bounded by a constant in practice since multiple inheritance is rare and is usually

at most 4. Therefore the expected time of the algorithm is

O(V C):

The multiplier C is due to the fact that Override or Inherit sets could include all

(or almost all) classes. In practice, these sets usually only contain a small number of

members. Only when there is a common root class (as with Java's Object class) will the

sets approach this size, and then only for the methods de�ned by Object, of which there

are a small number.

Therefore, in practical terms we expect the algorithm to be linear in the size of V .

CHAPTER 3. DATA STRUCTURES 31

Program C B Vc Override Inherit Antiset Connected
M Avg Max Avg Max Avg Max

sched 58 3 142 26.4 3 1.3 5 1.4 0 11

ixx 95 1 93 21.0 27 2.2 32 1.7 0 35

lcom 85 2 139 30.3 24 3.4 33 1.7 0 33

hotwire 37 2 60 13.1 11 2.7 17 2.1 0 17

simulate 55 2 140 27.9 5 2.2 9 1.5 0 10

idl 84 2 139 40.9 8 1.8 16 2.1 0 44

taldict 39 2 163 22.3 2 1.1 4 1.2 0 4

deltablue 10 1 22 19.3 5 5.0 1 1.0 0 6

richards 12 1 20 13.7 4 4.0 1 1.0 0 6

Key:
C Number of Classes B Maximum base classes
Vc Visible methods per class M Maximum Vc
Override Override set size Inherit Inherit set size
Antiset Antiset size Connected Largest connected subset of C

Table 3.1: Static Properties of the Class Hierarchy

3.3 Program Properties

The expected-time complexity arguments we have made depend partly on the presump-

tion that the complexity of the class hierarchy will naturally be restricted due to software

engineering principles and the inability of programmers to conceptualize very complex

class structures. In this section we present some measurements to support these claims.

The properties of a number of benchmark programs are shown in Table 3.1. The

benchmarks are the same ones used to evaluate the use of Rapid Type Analysis for program

optimization, and are described fully in Section 5.4.2. The �rst seven benchmarks are real

programs of medium size; the last two are commonly used small benchmarks that are

provided for comparison purposes.

Most surprising is that the total number of classes used by the programs is quite small

(never more than 100), even with the inclusion of iostream and other library classes.

While the number of classes would be expected to grow quite considerably with truly

large programs (1 million lines of code or more), it may be that the number of classes will

not be as large as has been generally supposed.

The set of visible methods at class c, Vc, has an average size ranging from 13 to 41.

CHAPTER 3. DATA STRUCTURES 32

void main() {

w* wp = new w;

y* yp = new y;

wp->g();

}

Figure 3.9: Code of the example program

Surprisingly, more than half of the programs had classes with more than 100 visible meth-

ods. While the maximum number of visible methods per class (M) varies considerably

across programs, the average varies considerably less and remains within the bounds that

we would expect based on software engineering principles. Therefore, as a rule of thumb

we can expect both the time and space cost of the CHG to be proportional to about 20

times the number of classes.

The largest Override and Inherit sets are close or equal in size to the largest connected

subset of the class graph, showing that there do exist some quite complex patterns of

method inheritance. However, the average size of both sets never exceeds 4 for real

programs.

The Antiset sets are all empty, indicating that there are no methods overridden by

sibling method de�nitions. The lack of sibling overrides is not surprising, since multiple

inheritance is rare in the �rst place and sibling overrides are questionable practice from a

software-engineering standpoint.

Therefore, we really can expect the buildFrontier algorithm to take time proportional

to the size of V , the set of visible methods.

3.4 The Program Virtual Call Graph

The analysis required for our optimizations is carried out using a program call graph

extended to take the semantics of virtual function calls into account (called the Program

Virtual-call Graph, or PVG), and a Class Hierarchy Graph (CHG) which represents the

class hierarchy and method inheritance relationships, and is designed to allow the PVG

construction and the analysis to be performed rapidly. We have found these two data

structures to be fundamental for a wide variety of object-oriented optimizations.

We will illustrate the PVG using the class hierarchy from Figure 3.2 whose CHG is

CHAPTER 3. DATA STRUCTURES 33

main

s1 s3s2

w::w

x::g

w::g

s4

y::y

s5

x::x

s6

z::z

s8

u::u

s7

u::fz::f

Figure 3.10: PVG of the example program in Figure 3.9.

shown in Figure 3.3. Figure 3.9 is an example program using those class declarations. It

simply creates objects of types w and y, and then invokes the virtual function g() via the

pointer, wp, to the w object.

3.4.1 Formal Description

The PVG is a call graph, extended to handle the semantics of virtual function calls.

The PVG is a tuple < F;S; I;R > where

� F is the set of function nodes (F includes methods and non-methods, so the set MD

of methods with code bodies is a subset of F),

� S is the set of call site sub-nodes,

� I is the set of call instance edges, and

� R � F is the set of roots of the call graph.

The PVG for our example program is shown in Figure 3.10. The set of methods is

MD = fw :: w; y :: y; x :: x; z :: z; u :: u; w :: g; x :: g; z :: f; u :: fg

the set of functions is

F = fmaing [MD

CHAPTER 3. DATA STRUCTURES 34

< s1; main; w :: w; ? >

< s2; main; y :: y; ? >

< s3; main; w :: g; fw; yg >

< s3; main; x :: g; fx; z; ug >

< s4; y :: y; w :: w; ? >

< s5; x :: x; w :: w; ? >

< s6; z :: z; x :: x; ? >

< s7; u :: u; z :: z; ? >

< s8; u :: u; y :: y; ? >

Figure 3.11: The call instances for the PVG in Figure 3.10.

the set of call sites is

S = fs1; s2; s3; s4; s5; s6; s7; s8g

where the si are arbitrary labels assigned to each call site. The set of root nodes is

R = fmaing:

The function node main contains three call site sub-nodes: one for each constructor

call invoked by the new operations, and one for the call to g() (the calls to the actual

storage allocator have been elided for conciseness of presentation).

Note that main has three call sites, or subnodes, but four call instances, or edges. The

call to g() could be to either w's g() or x's g(), since a variable of type pointer to w can

actually point to w or any of its derived classes. Subsequent analysis can eliminate the

call to x::g() as a possibility, either (1) by discovering that no x, z, or u objects are

created, or (2) by discovering that the only possible type for wp at this program point is

w. Our analysis will take the �rst approach, which we will show to be both simpler and

faster, although not always as accurate.

A call instance edge is a tuple < s; f; g; P >2 I where

� s 2 S is a call site,

� f 2 F is the calling function,

� g 2 F is the target function of the call, and

� If s is not a virtual call, P =?. If s is a virtual call site, then P is the set of possible

classes upon which a virtual method call can be invoked (P � C, the set of all

classes).

CHAPTER 3. DATA STRUCTURES 35

Figure 3.11 shows the call instances for our example program. For direct function calls,

like the calls to the constructors for w and y, there is a one-to-one mapping of call sites

to call instances. However, for indirect calls (virtual calls, function pointer calls, and

pointer-to-member function calls), there may be many call instances per call site.

The virtual call to g() is represented by the two call instances for the call site s3. The

call instance for w::g() will be invoked when the dynamic type of the object pointed to

by wp is w or y, so these types are in the �rst instance's set of possible classes. The call

instance for x::g() will be invoked when the dynamic type of ap is x, z, or u.

If a call is made via a function pointer, there will be one call instance for each function

in the program whose type matches the function pointer type. If a call is made via a

pointer to a member function, there will be one call instance for each function in the class

of the static object type, and its transitive base classes, that matches the function pointer

type.

Since this dissertation is concerned primarily with virtual function calls, and since

methods for handling calls via function pointers are well known (e.g. [Burke et al. 1994]),

we will touch only brie
y on function pointers and concentrate on virtual calls. Our

implementation handles all call site types, and our benchmarks make use of all of them.

3.4.2 Building the PVG

Building the PVG requires the CHG, as well as information about the call sites in

the source program. The input to the PVG builder algorithm is the CHG, the set of

functions F , and the source-level call site information. In this and all other subsequent

algorithms, the CHG and the associated Inherit and Override sets are considered to be

\global variables" and are not explicitly passed as input parameters.

In practice, the source-level call site information is obtained by scanning the program

during compilation, and is not actually placed in sets. However, to make this process

abstract and to clarify exactly what source-level information is required, we will represent

the source-level call site information in the set �.

The source-level call site information in � is contained in subsets representing the

di�erent types of call sites in the programs: direct call sites (�D) and virtual call sites

(�V). Function pointer and pointer-to-member calls will be dealt with in the following

section. All call sites are tuples in which

CHAPTER 3. DATA STRUCTURES 36

1 buildPVG(�D;�V)
2 I ;
3 for each < s; f; g >2 �D
4 I I [f< s; f; g;?>g
5 for each < s; f; v >2 �V
6 addVirtualInstances(s; f; v)

7 addVirtualInstances(s 2 SV ; f 2 F; v 2 V)
8 Let < c;m; d >= v

9 if < s; f;m; Inherits(v) >2 I
10 return

11 I I [f< s; f;m; Inherits(v) >g
12 for each w 2 Override(v)
13 addVirtualInstances(s; f; w)

Figure 3.12: Algorithm to Construct the Program Virtual-call Graph (PVG)

� s 2 S is a unique call site identi�er, and

� f 2 F is the calling function (the source of the call)

A direct call site k 2 �D is a tuple < s; f; g > where

� g 2 F is the target function of the call.

A virtual call site k 2 �V is a tuple < s; f; v > where

� v 2 V is the visible function corresponding to the static type of the call.

The sets SD and SV are subsets of S which contain the call site identi�ers of the direct

and virtual call sites, respectively. Formally,

SD = fs 2 S j f 2 F; t 2 F : < s; f; t >2 �Dg

and

SV = fs 2 S j f 2 F; v 2 V : < s; f; v >2 �V g:

The algorithm in Figure 3.12 constructs the PVG. The nodes of the PVG, the methods

and functions of the set F , have been given. The algorithm adds edges to the set I of call

instances. In essence, building the PVG is a process of converting source-level information

about each call site into a set of possible targets for that call.

CHAPTER 3. DATA STRUCTURES 37

Lines 3 and 4 simply add the direct call edges to the PVG. Lines 5 and 6 invoke ad-

dVirtualInstances for each virtual call site. This recursive function adds a call instance

corresponding to the statically declared type of the object through which the call is made.

The set of possible classes is the Inherits set of the corresponding visible method node.

The function is then invoked recursively for each overriding function. The test at the

beginning ensures that we do not needlessly re-traverse the CHG in cases of multiple

inheritance.

3.4.3 Complexity

The expected cost of the buildPVG algorithm is

O(SD + SVD logC)

That is, for each call site in SV there could be as many as D (the number of edges in the

CHG) recursive calls, each of which will cost log C to look up and insert the call instance

(we assume that in the implementation the call instances are attached to their associated

call site).

In practice, the number of overrides will usually be small and the cost of set lookup

will be constant.

3.4.4 Function Pointers

The PVG construction algorithm of the previous section only dealt with direct and

virtual calls. While this is su�cient for some languages, like Java, C++ also allows calls

through function pointers and pointers to member functions.

We de�ne TypeOf (f), where f 2 F , to be the type of a function, according to the

semantics of the language. The signature of a function, which we discussed previously, is

a pair consisting of the function name and the function type. We let

T = fTypeOf (f) j f 2 Fg

be the set of all function types in the program.

Formally, as before, all source level call sites are tuples in which

� s 2 S is a call site, and

� f 2 F is the calling function

CHAPTER 3. DATA STRUCTURES 38

1 buildExtendedPVG(�D;�V ;�P ;�M)
2 buildPVG(�D;�V)
3 for each < s; f; t >2 �P
4 for each g 2 F : TypeOf (g) = t

5 I I [f< s; f; g;?>g
6 for each < s; f; c; b; t >2 �M
7 addMemberInstances(s; f; b; t)
8 for each v 2 Vc
9 Let < c;m; d >= v

10 if IsVirtual(m) and TypeOf (m) = t

11 if 9n2M;e2C : (< b; n; e >2 V and Sig(m) = Sig(n))
12 addVirtualInstances(s; f; v)

13 addMemberInstances(s 2 SM ; f 2 F; c 2 C; t 2 T)
14 for each m 2M : < c;m; c >2 V and TypeOf (m) = t

15 if not IsVirtual(m)
16 I I [f< s; f;m;?>g
17 for each b 2 C : < b; c >2 D
18 addMemberInstances(s; f; b; t)

Figure 3.13: Building the PVG for C++: handling function pointer and pointer-to-
member calls.

A function pointer call site k 2 �P is a tuple < s; f; t > where

� t 2 T is the type of the function pointer.

A pointer-to-member function call site k 2 �M is a tuple < s; f; c; b; t > where

� c 2 C is the class of the object or expression through which the call was made,

� b 2 Bases�(c) is the class of the member function pointer, and

� t 2 T is the type of the function pointer.

The sets SP and SM are de�ned analogously to SD and SV to be the sets of call site iden-

ti�ers of function pointer call sites and pointer-to-member function call sites, respectively.

Figure 3.13 extends the PVG construction algorithm to handle both types of calls. The

call instances for a function pointer call are straightforward: they consist of one instance

for each function whose type is equivalent to that used at the call site.

Member function pointers point to a function of the class that matches a particular type

signature. For a given function type and a given class, the possible non-virtual member

CHAPTER 3. DATA STRUCTURES 39

functions are all non-virtual functions of the class or its base classes that match the type;

the possible virtual member functions are the virtual functions that are visible in the type

of the member pointer. For further information see the C++ Annotated Reference Manual

[Ellis and Stroustroup 1990].

The call instances for a pointer-to-member function call are calculated by starting at

the static class type of the pointer and moving up the CHG. This is not a particularly

e�cient procedure for calculating the call instances, but pointer-to-member functions are

rarely used and are unlikely to merit a more sophisticated implementation.

Complexity

The theoretical complexity of adding the function pointer call instances is O(SPF),

but in practice SP is likely to be small and the number of functions that match the type

of any one of them is also likely to be small.

The theoretical complexity of adding the pointer-to-member call instances to the PVG

is O(SMD logM), but once again the number of such call sites is likely to be very small

(we encountered only one benchmark which contained any such calls; there were 2). In

addition, there are not likely to be a large number of base classes.

3.4.5 Constructing the PVG for Java

There are no special considerations for constructing the PVG for Java. We can simply

use the algorithm of Figure 3.12. However, it is worth pointing out that Java programs

may contain signi�cant numbers of direct calls, either as static member functions or as

methods that are introduced as final.

Chapter 4

The Rapid Type Analysis

Algorithm

4.1 The Problem

The key to the optimization of a number of object-oriented language features lies in

knowing to what types an object reference in the static text of the program might actually

refer during the dynamic execution of the program.

More formally, for a particular expression e in the static program text, we would like

to know the set E � C of possible types for the object to which e will evaluate (or refer)

at run-time.

This problem is related to the problem of type-inferencing in untyped languages. How-

ever, as discussed in Chapter 2, that term often refers to attempts to determine the type for

the purpose of performing compile-time checks of the sort that statically typed languages

typically perform. We therefore use the term type analysis to draw the distinction.

4.2 The Analysis Spectrum

A variety of algorithms have been proposed either to solve the type analysis problem,

or to solve broader problems whose solution includes type analysis. There is considerable

variation in complexity among these algorithms, both in the formal sense of computational

complexity and in the pragmatic sense of complexity of implementation. Both types of

complexity are an issue in compiler implementation: a slow optimization is less likely to

40

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 41

Compile Time

P
re

ci
si

on

Figure 4.1: Type Analysis Algorithms: time to execute during compilation versus accuracy
of solution. We are searching for a type analysis algorithm at the in
ection point of this
curve.

be used by programmers, and a more complicated algorithm is less likely to be added to

a compiler, which is already a very complicated piece of software.

The optimizations described in Chapters 5, 6, and 7 all require the capability to ask for

the set E to optimize a particular expression. As long as it can provide this information in

a conservative manner, any type analysis algorithm can be used to drive the optimization.

Our hypothesis, which we will validate with our subsequent experimental results, is that

an algorithm exists for the type analysis problem which is close to optimal in precision, but

is not very expensive to implement or execute. This is shown conceptually in Figure 4.1:

we are looking for the algorithm at the \in
ection point" in the precision-time tradeo�

graph.

The algorithm that we have developed to �ll this role is called Rapid Type Analysis.

4.3 Static Analysis Overview

Before describing Rapid Type Analysis formally, in this section we will describe three

fast static algorithms in the analysis spectrum. Two algorithms have been previously

published in the literature (Unique Name [Calder and Grunwald 1994] and Class Hierarchy

Analysis [Dean et al. 1995; Fernandez 1995]). The third algorithm, Rapid Type Analysis,

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 42

class A {

public:

virtual int foo() { return 1; };

};

class B: public A {

public:

virtual int foo() { return 2; };

virtual int foo(int i) { return i+1; };

};

void main() {

B* p = new B;

int result1 = p->foo(1);

int result2 = p->foo();

A* q = p;

int result3 = q->foo();

}

Figure 4.2: Program illustrating the di�erence between the static analysis methods.

is new. We will sometimes abbreviate the algorithms as UN, CHA, and RTA, respectively.

We use a small example program to illustrate the three algorithms and give some

intuition about how RTA works. We then brie
y compare them in power to other static

analyses, and discuss the interaction of type safety and analysis.

4.3.1 Unique Name

The �rst published study of virtual function call resolution for C++ was by Calder

and Grunwald [1994]. They were attempting to optimize C++ programs at link time, and

therefore had to con�ne themselves to information available in the object �les. They ob-

served that in some cases there is only one implementation of a particular virtual function

anywhere in the program. This can be detected by comparing the mangled names 1 of the

C++ functions in the object �les.

When a function has a unique name (really a unique signature), the virtual call is

replaced with a direct call. While it can be used within a compiler in the same manner

1The mangled name of a function is the name used by the linker. It includes an encoding of the class

and argument types to distinguish it from other identically named functions.

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 43

as the other algorithms evaluated in this chapter, Unique Name has the advantage that

it does not require access to source code and can optimize virtual calls in library code.

However, when used at link-time, Unique Name operates on object code, which inhibits

further optimizations such as inlining.

Figure 4.2 shows a small program which illustrates the power of the various static

analyses. There are three virtual calls in main(). Unique Name is able to resolve the �rst

call (that produces result1) because there is only one virtual function called foo that

takes an integer parameter { B::foo(int). There are many foo functions that take no

parameters, so it can not resolve the other calls.

4.3.2 Class Hierarchy Analysis

Class Hierarchy Analysis [Dean et al. 1995; Fernandez 1995] uses the combination of the

statically declared type of an object with the class hierarchy of the program to determine

the set of possible targets of a virtual function call. In Figure 4.2, p is a pointer whose

static type is B*. This means that p can point to objects whose type is B or any of B's

derived classes.

By combining this static information with the class hierarchy, we can determine that

there are no derived classes of B, so that the only possible target of the second call (that

produces result2) is int B::foo().

Class Hierarchy Analysis is more powerful than Unique Name for two reasons: it uses

class type declarations (as in Figure 4.2), and it can ignore identically-named functions in

unrelated classes.

Class Hierarchy Analysis must have the complete program available for analysis, be-

cause if another module de�nes a class C derived from B that overrides foo(), then the

call can not be resolved.

In the process of performing Class Hierarchy Analysis, we build a call graph for the

program. The call graph includes functions reachable from main() as well as those reach-

able from the constructors of global-scope objects. Note that some other researchers use

the term \Class Hierarchy Analysis" to denote only the resolution of virtual calls, not the

building of the call graph.

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 44

4.3.3 Rapid Type Analysis

Rapid Type Analysis starts with a call graph generated by performing Class Hierar-

chy Analysis. It uses information about instantiated classes to further reduce the set of

executable virtual functions, thereby reducing the size of the call graph.

For instance, in Figure 4.2, the virtual call q->foo() (which produces result3) is not

resolved by Class Hierarchy Analysis because the static type of q is A*, so the dynamic

type of the object could be either A or B. However, an examination of the entire program

shows that no objects of type A are created, so A::foo() can be eliminated as a possible

target of the call. This leaves only B::foo().

Note that RTA must not count the invocation of a base class constructor as an actual

instantiation of the base class: when an object of type B is created, A's constructor is called

to initialize the A sub-object of B. However, the virtual function table of the contained

object still points to B's foo() method.

Rapid Type Analysis builds the set of possible instantiated types optimistically : it

initially assumes that no functions except main are called and that no objects are instan-

tiated, and therefore no virtual call sites call any of their target functions. It traverses

the call graph created by Class Hierarchy Analysis starting at main. Virtual call sites are

initially ignored. When a constructor for an object is found to be callable, any of the

virtual methods of the corresponding class that were left out are then traversed as well.

The live portion of the call graph and the set of instantiated classes grow iteratively in an

interdependent manner as the algorithm proceeds.

Rapid Type Analysis inherits the limitations and bene�ts of Class Hierarchy Analysis:

it must analyze the complete program. Like CHA, RTA is
ow-insensitive and does not

keep per-statement information, making it very fast.

Rapid Type Analysis is designed to be most e�ective when used in conjunction with

class libraries. For instance, a drawing library de�nes numerous objects derived from class

shape, each with their own draw()method. A program that uses the library and only ever

creates (and draws) squares will never invoke any of the methods of objects like circle

and polygon. This will allow calls to draw() to be resolved to calls to square::draw(),

and none of the other methods need to be linked into the �nal program. This leads to

both reduced execution time and reduced code size.

Another approach to customizing code that uses class libraries is to use class slicing

[Tip et al. 1996].

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 45

4.3.4 Other Analyses

There are several other levels of static analysis that can be performed. First, a simple

local
ow-sensitive analysis would be able to resolve this call:

A* q = new B;

q = new A;

result = q->foo();

because it will know that q points to an object of type A. Rapid Type Analysis would not

resolve the call because both A and B objects are created in this program.

An even more powerful static analysis method is alias analysis, which can resolve calls

even when there is intervening code which could potentially change an object's type. Alias

analysis is discussed more fully in Section 5.5.2, with related work.

4.3.5 Type Safety Issues

An important limitation of CHA and RTA is that they rely on the type-safety of the

programs. Continuing to use the class hierarchy from Figure 4.2, consider the following

code fragment:

void* x = (void*) new B;

B* q = (B*) x;

int case1 = q->foo();

Despite the fact that the pointer is cast to void* and then back to B*, the program is still

type-safe because we can see by inspection that the down-cast is actually to the correct

type. However, if the original type is A, as in

void* x = (void*) new A;

B* q = (B*) x;

int case2 = q->foo();

then the program is not type-safe, and the compiler would be justi�ed in generating code

that raises an exception at the point of the virtual function call to foo(). However,

because foo() is in fact de�ned for A, most existing compilers will simply generate code

that calls A::foo(); this may or may not be what the programmer intended. If the call

had instead been

int case3 = q->foo(666);

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 46

then the program will result in a unde�ned run-time behavior (most likely a segmentation

fault) because A's virtual function table (VFT) does not contain an entry for foo(int).

The computation of case1 is clearly legal, and the computation of case3 is clearly

illegal. In general it is not possible to distinguish the three cases statically. Unfortu-

nately, in case2, Class Hierarchy Analysis would determine that the call was resolvable

to B::foo(), which is incorrect. Rapid Type Analysis would determine that there are

no possible call targets, which is correct according to the C++ language de�nition but

di�erent from what is done by most compilers.

Therefore, Class Hierarchy Analysis and Rapid Type Analysis either need to be disabled

whenever a downcast is encountered anywhere in the program, or they can be allowed

to proceed despite the downcast, with a warning printed to alert the programmer that

optimization could change the results of the program if the downcasts are truly unsafe (as

in case2 or case3).

We favor the latter alternative because downcasting is very common in C++ programs.

Additional
exibility can be provided by pragmas or compiler switches which allow virtual

function call resolution to be selectively disabled at a call site or for an entire module.

We will discuss this issue further when we present the results for one of our benchmarks,

lcom, which contained some unsafe code.

Of course, this entire issue is absent in type-safe languages, such as Java, in which

down-casts are always type-checked.

4.4 The Algorithm

The Rapid Type Analysis (RTA) algorithm walks over the PVG, starting at the root,

and �nds the set of classes instantiated in live code. The set of instantiated classes is

intersected with the set of possible classes (derived from analysis of the CHG) contained

in each virtual call instance to determine whether that call instance is potentially live.

RTA's type analysis is crude, in that no
ow analysis is performed within a procedure,

and no attempt is made to di�erentiate the possible types which may be assigned to

di�erent variables. However, as will be seen, RTA is very e�ective.

Figure 4.3 shows a recursive formulation of the algorithm. In addition to the PVG, it

makes use of four sets, which represent the classes (CL), functions (FL), call sites (SL),

and call instances (IL) that are live in the program. A class is live if it may be created by

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 47

1 rapidTypeAnalysis(F; S; I;R)
2 QV ;
3 CL FL SL IL ;
4 for each f 2 R
5 analyze(f , false)

6 analyze(f 2 F; isbase 2 Boolean)
7 if IsConstructor (f) and not isbase

8 instantiate(ClassOf (f))
9 if f 2 FL
10 return

11 FL FL [ffg
12 for each s 2 S; t 2 F; P 2 2C : < s; f; t; P >2 I
13 Let i =< s; f; t; P >

14 if s 2 SD or (s 2 SV and CL \ P 6= ;)
15 addCall(i)
16 else

17 addVirtualMappings(P; i)

18 addCall(i 2 I)
19 Let < s; f; t; P >= i

20 IL IL [fig
21 SL SL [fsg
22 analyze(t; IsBaseConstructorCall (i))

23 instantiate(c 2 C)
24 if c 2 CL
25 return

26 CL CL [fcg
27 for each i 2 I : < c; i >2 QV

28 if i 62 IL
29 addCall(i)
30 QV QV � f< c; i >g

31 addVirtualMappings(P 2 2C ; i 2 I)
32 for each p 2 P
33 QV QV [f< p; i >g

Figure 4.3: The Rapid Type Analysis Algorithm

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 48

the program; a function is live if it can be reached from the root of the PVG; a call site is

live if any of its call instances are live; and a call instance is live if its enclosing function

is live and, if it is a virtual call, if one of its possible classes (p 2 P) is live.

The algorithm also maintains a mapping from classes to call instances. This is because

we may encounter a virtual call that can be invoked on classes a and b, which we have not

yet discovered to be live, but will later discover to be live. In such a situation, we add an

entry for each of the two classes to the mapping, which is checked later when new class

instantiations are discovered.

After the program has been analyzed, a post-pass over the call sites constructs SR, the

set of call sites that have only one live target, and have therefore been resolved into direct

calls.

The analyze function of the RTA algorithm analyzes a function body. It begins by

checking whether the function is a constructor, and that constructor is not being invoked

by the constructor of a derived class (line 7). If that is so, it calls instantiate on the class

of the constructor function f , which takes care of adding the class to CL, the set of live

classes (line 8).

Then analyze checks whether f has already been processed, and if so returns without

performing further work (lines 9 and 10). This check must be done after the instantiation

check for constructors because it is possible that the �rst time the constructor is visited

is when it is a base constructor call, but is subsequently called to construct its own class.

If this is the �rst time that f has been examined, f is then added to FL, the set of live

functions (line 11).

On line 12, analyze iterates over the call instances of f . Direct calls are always added

to the live call graph; virtual calls are only added if one of the possible classes in Px for

the method is in the set of live classes CL (lines 14 and 15). If none of the possible classes

is live, then one entry for each of the possible classes is made in the map QV (line 17).

This way, if one of the classes in Px is subsequently added to CL, the call instance will be

added to the live call graph because the class will be found in the map QV .

The addCall function takes a call instance and adds it to the set of live instances IL,

and adds the call site of the call instance to the set of live call sites SL. It then calls

analyze on the target t of the call instance (line 22).

The second argument to analyze is a boolean
ag that tells whether the call is a

call from a constructor of a derived class to a constructor of its base class. In this case,

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 49

we do not want to treat this call as one that causes objects of the case class to become

instantiated.

The instantiate function does the work of adding a new live class. If the class has

already been added to CL, it simply returns without performing any work (lines 24 and

25). Otherwise, the class c is added to the set of live classes CL (line 26).

Now if there are any entries in the map QV for call instances that were not added

to the live call graph because class c had not yet been instantiated, those instances are

added to the live call graph (lines 27{30). A check to make sure that the instance has not

already been added is necessary because some other class in the set Px could have been

instantiated previously.

4.5 Complexity

The complexity of the RTA algorithm is relatively simple to analyze if we use a few

counting tricks. The analyze function is called for every root function and for every live

call instance, so it is called at most R+ IL times. We assume that the set of roots of the

call graph is a small constant, or that there is a single arti�cial root node with direct call

instances to all of the actual root calls; the former situation exists for Java, and the latter

is the approach we took in our implementation for C++.

By similar logic, addCall is only called once for each instance in IL. And since the

set union operations it contains are actually implemented by simply turning on bits in

the call site and call instance objects, the total cost of all calls to addCall (excluding the

functions it calls) is O(IL).

The instantiate function is called from analyze, and could be called once for each

live constructor call in the program. The number of live constructor calls is certainly less

than the total number of live calls, IL.

The analyze function is called IL times, and the membership and union operations on

the set FL take constant time since FL is implemented with with a
ag on each member of

F . The loop on line 12 iterates over all of the call instances originating from the current

function f . However, since this part of analyze is executed at most once per function, we

can bound the number of total iterations of the loop for all executions of analyze by I,

the total number of call instances.

Now let us examine the loop on lines 13{17. The if test take constant time if s 2 SD,

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 50

and O(P) time if s 2 SV (since CL is implemented as a
ag on each member of C,

we perform P constant-time checks). The else branch of the statement inserts P items

into QV , and each insertion takes O(C) worst-case time because QV is represented by a

balanced tree and all entries for the same class p are linked to a single tree node for that

class.

If we de�ne P to be the maximum size of all sets P , or

P = max
<s;f;g;P>2I

jP j

then the time for all iterations of the loop is O(IP logC). Therefore, the total cost for all

executions of analyze is O(R+ IL + IP logC).

Now we only have to account for the executions of the body of instantiate, which is

called O(IL) times. The test if c 2 CL takes constant time because membership in CL is

implemented with a
ag for each member of C. Therefore, the body of instantiate from

lines 26{30 is only executed CL times.

The union and membership operations on lines 26 and 28 take constant time due to

the use of
ags. Recall that all call instances in the map QV associated with class c are

kept in a list attached to the node for c in QV . Therefore, it takes O(logC) time to �nd

the node (in line 27) and to remove it (on line 30 { which is really a single operation,

outside of the loop).

For all executions of instantiate, the body of the loop is executed at most once for each

element of QV , and we determined in our analysis of the analyze function that O(IP)

entries are added to QV . Therefore, the total time for all executions of instantiate is

O(IL +CL logC + IP).

We can now determine the total running time for the RTA algorithm by adding the

costs for all three component functions. The result is

O((R+ IL + IP logC) + IL + (IL + CL logC + IP)

which can be simpli�ed to

O(R+ IP logC + CL logC)

and by observing that since there must be at least one call instance for the constructor

call to each class in CL then jCLj � jIj, we arrive at a �nal worst-case complexity of

O(R+ IP logC):

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 51

4.5.1 Expected Complexity

In all but the most unusual programs the number of root functions of the call graph is

small, so the R term can be dropped.

By implementing the map structure QV with a hash table, we can reduce the expected

complexity to O(IP) at the cost of degrading the worst-case complexity to O(IPC).

The IP term is due to the fact that in the worst case, we must assume that every

virtual instance is added to QV . There are a number of observations we can make about

this term. First, direct calls are never added to QV , so (I � SD)P is a more accurate

bound on the maximum number of entries. Second, in most cases the sets P of the virtual

call instances will be small, since it is rare for a large number of classes to inherit a virtual

function. Finally, entries are added to QV only if none of the classes in P have been

created. Unless program organization is unusual, classes will be created \before" they are

used (in the sense of the call graph), and therefore their virtual calls will not be added to

QV at all.

Because of all of these factors, we expect the time for RTA in practice to be proportional

to the size of I.

4.6 Function and Member Function Pointers

The RTA algorithm presented in the previous section only handles programs with direct

and virtual calls. We now extend the RTA algorithm to handle programs with function

pointer and pointer-to-member calls.

The extension for function pointers is straightforward, using techniques developed pre-

viously to build call graphs for C and Fortran programs. A function can be called by

pointer only if its address is taken. During our initial scan of the program (when we

identify the call sites), we also make note of any functions whose addresses are taken in a

function. This set is denoted FunctionPointers(f), where f 2 F . Even in programs that

make use of function pointer calls, FunctionPointers(f) = ; for most functions f .

The extended RTA algorithm is shown in Figures 4.4 and 4.5. When a function f is

analyzed, FunctionPointers(f) is added to the set FA, which is the set of functions whose

addresses have been taken in live code.

When a function pointer call is encountered, there will be a set of call instances cor-

responding to the functions in F whose type matches the type of the function pointer.

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 52

Those call instances whose corresponding functions are in FA are added to the call graph;

those that are not are added to QP , which keeps track of function pointer call instances

that may subsequently have to be added to the live call graph. When a new function g is

added to FA, any entries in QP for g are added to the live call graph.

Member function pointers are handled in an identical manner. However, since a regular

function pointer can not be used for a pointer-to-member function call (and vice versa),

member function pointers must be handled separately.

4.7 Special Issues for C++

In our presentation of the RTA algorithm, we have omitted a few details of the C++

language that complicate analysis.

4.7.1 Construction VFT's

Construction virtual function tables are an arcane feature of C++ designed to allow

virtual functions to be called from constructors of partially constructed objects. Unfortu-

nately, this feature complicates analysis and sometimes reduces its precision.

Consider the code in Figure 4.6: when an object of type B is created, A's constructor

will be invoked. A's constructor calls the virtual function foo(). Since the B portion of

the object is uninitialized while A's constructor executes, it would be erroneous to invoke

B's foo() method.

Therefore, C++ mandates that in such circumstances, a special virtual function table

be created for the time during which the B object is partially constructed. This table is

known as the construction VFT.

Construction VFT's create a problem for type analysis algorithms for C++. In the

scenario just described, even though no A objects are created, an object is alive in the

program which acts like an A object for purposes of virtual function dispatch. This means

that as presented, the algorithm might not build an accurate call graph.

The solution that we adopt is relatively straightforward. It is not the most precise

solution, but it is in the spirit of the RTA algorithm in that it is a fast solution that will

work in the most common cases.

When the code of each method is �rst analyzed to identify the function call sites, we

now also collect an additional piece of information: if the this pointer is copied or passed

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 53

1 extendedRTA(F; S; I;R)
2 QV QP QM ;
3 CL FL SL IL ;
4 FA MA ;
5 for each f 2 R
6 analyze(f , false)

7 analyze(f 2 F; isbase 2 Boolean)
8 if IsConstructor (f) and not isbase

9 instantiate(ClassOf (f))
10 if f 2 FL
11 return
12 FL FL [ffg
13 addFunctionPointers(f)
14 addMemberPointers(f)
15 for each s 2 S; t 2 F; P 2 2C : < s; f; t; P >2 I
16 Let i =< s; f; t; P >

17 if s 2 SD or (s 2 SV and CL \ P 6= ;)
18 addCall(i)
19 else if s 2 SV
20 addVirtualMappings(P; i)
21 else if s 2 SP
22 if t 2 FA
23 addCall(i)
24 else

25 QP QP [f< t; i >g
26 else if s 2 SM
27 if t 2MA and (P =? or P \ CL 6= ;)
28 addCall(i)
29 else if t 62MA

30 QM QM [f< t; i >g
31 else

32 addVirtualMappings(P; i)

Figure 4.4: RTA Extensions for Function Pointers and Member Function Pointers (1)

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 54

33 addFunctionPointers(f 2 F)
34 for each g 2 FunctionPointers(f) : g 62 FA
35 FA FA [fgg
36 for each i 2 I : < g; i >2 QP

37 QP QP � f< g; i >g
38 addCall(i)

39 addMemberPointers(f 2 F)
40 for each m 2 MemberPointers(f) : m 62MA

41 MA MA [fmg
42 for each i 2 I : < m; i >2 QM

43 QM QM � f< m; i >g
44 Let < s; g; h; P >= i

45 if P =? or P \ CL 6= ;
46 addCall(i)
47 else

48 addVirtualMappings(P; i)

Figure 4.5: RTA Extensions for Function Pointers and Member Function Pointers (2)

class A {

public:

A::A() { foo(); };

virtual void foo();

};

class B: public A {

public:

virtual void foo();

};

Figure 4.6: C++ Code Requiring Construction VFT's

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 55

as a parameter (other than the implicit this pointer), we mark a
ag associated with the

method, ThisEscapes, as true. Otherwise, ThisEscapes is marked false.

After constructing the PVG, but before invoking the Rapid Type Analysis procedure,

we make a bottom-up pass over the PVG. When there is a call instance from method m

to method n via the this pointer of m, if n is not a base class constructor then

ThisEscapes(m) ThisEscapes(m) or ThisEscapes(n):

We now modify the RTA algorithm of Figure 4.3 so that line 22 reads

analyze(t; IsBaseConstructorCall(i) and not ThisEscapes(i))

Note that the mechanism for handling construction VFTs depends upon the fact that

it is illegal to access an object that is partially constructed through any means except

its this pointer. The C++ Annotated Reference Manual x12.1 states: \The type system

makes it hard, but not impossible, to use an object before it is fully constructed. Use of

a partially constructed object is unde�ned since it would violate any implicit or explicit

invariants assumed about objects of the class" [Ellis and Stroustroup 1990].

4.7.2 Local Classes

The ability to de�ne classes locally within a function body also complicates analysis,

although purely in a practical rather than a theoretical fashion. Because RTA relies on

knowing the entire class hierarchy to perform optimization, it means that it is not possible

to merely scan the class de�nitions, build the CHG, and then scan, translate, and optimize

each procedure in a single pass.

We have found nested classes to be relatively rare. Because we wish to be able to

compile large programs e�ciently, we optimistically assume that there are no local classes,

build the CHG from the globally available class de�nitions, and then compile each function.

If any local classes are found, then any functions that were optimized using the RTA

information are re-compiled using a \fast path" which avoids performing many of the

checks associated with normal compilation. In particular, static semantic checks can be

omitted since the functions in question have already been compiled once and determined

to conform to the language rules.

CHAPTER 4. THE RAPID TYPE ANALYSIS ALGORITHM 56

4.8 Adapting RTA for Java

Once the CHG and PVG have been constructed, most of the language-speci�c aspects

have been dealt with. There are only a few minor issues that are speci�c to Java.

Mostly, Java is simpler than C++. There are no construction VFTs, so the ThisEscapes

calculation and related machinery described in the previous section are not needed.

One di�erence between C++ and Java is that Java has a common ancestor for all

implementation classes (the class Object). The sets of possible methods Px for call sites

through the Object type will be very large, including most or all of the classes in C.

As a result, the analyze function could potentially spend a great deal of time uselessly

adding entries to the map QV (lines 14 and 17 of Figure 4.3). The solution to this problem

is simple: in the initialization on line 3, the set CL is initialized to fObjectg instead of

;. As a result, when a call is made through a pointer of type Object, the condition

CL \ Px 6= ; on line 14 will always be true and line 17 will not be executed.

Treating Object as an instantiated class will not degrade the performance of the algo-

rithm, since even if some classes override methods of the class Object, there will always

be some class in CL that does inherit the default methods.

It is possible that as a result of these di�erences, Java would be more likely than C++

to derive improvement in precision from a
ow-sensitive algorithm for type analysis.

Chapter 5

Resolution of Virtual Function

Calls

A major advantage of object-oriented languages is abstraction. The most important

language feature that supports abstraction is the dynamic dispatch of methods based on

the run-time type of an object. In dynamically typed languages like Smalltalk and SELF,

all dispatches are considered dynamic, and eliminating these dynamic dispatches has been

essential to obtaining high performance [Chambers et al. 1991b; H�olzle et al. 1991; Ungar

et al. 1992].

C++ is a more conservatively designed language. Programmers must explicitly request

dynamic dispatch by declaring a method to be virtual. C++ programs therefore su�er

less of an initial performance penalty, at the cost of reduced
exibility and increased

programmer e�ort. However, virtual function calls still present a signi�cant source of

opportunities for program optimization.

The most obvious opportunity, and the one on which the most attention has been

focused, is execution time overhead. Even with programmers specifying virtual functions

explicitly, the execution time overhead of virtual function calls in C++ has been measured

to be as high as 40% [Lee and Serrano 1995]. In addition, as programmers become familiar

with the advantages of truly object-oriented design, use of virtual functions increases.

The costs associated with developing software are so high that the performance penalty of

virtual functions is often not su�cient to deter their use. Therefore, unless compilers are

improved, the overhead due to virtual function calls is likely to increase as programmers

make more extensive use of this feature.

57

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 58

Other researchers have shown that virtual function call resolution can result in signi�-

cant performance improvements in execution time performance for C++ programs [Calder

and Grunwald 1994; Aigner and H�olzle 1996; Lee and Serrano 1995]; in our work we con-

centrate on comparing algorithms for resolving virtual function calls, and investigating

the reasons for their success or failure.

Another opportunity associated with virtual functions is code size reduction. For a

program without virtual function calls (or function pointers), a complete call graph can

be constructed and only the functions that are used need to be linked into the �nal

program. With virtual functions, each virtual call site has multiple potential targets.

Without further knowledge, all of those targets and any functions they call transitively

must be included in the call graph.

As a result, object-code sizes for C++ programs have become a major problem in some

environments, particularly when a small program is statically linked to a large object

library. For instance, when a graphical \hello world" program is statically linked to a GUI

object library, even though only a very small number of classes are actually instantiated

by the program, the entire library can be dragged in.

Finally, virtual function calls present an analogous problem for browsers and other

program-understanding tools: if every potential target of a virtual function call is included

in the call graph, the user is presented with a vastly larger space of object types and

functions that must be comprehended to understand the meaning of the program as a

whole.

In this chapter, we compare three fast static analysis algorithms for resolving virtual

function calls and evaluate their ability to solve the problems caused by virtual function

calls in C++. We also use dynamic measurements to place an upper bound on the potential

of static analysis methods, and compare the analysis algorithms against more sophisticated

analyses like alias analysis. Finally, we present measurements of the speed of the analysis

algorithms, which demonstrate that they are fast enough to be included in commercial-

quality compilers.

5.1 Algorithms for Resolution of Indirect Calls

Once an algorithm like Rapid Type Analysis has been applied to a program, resolving

virtual calls into direct calls is relatively straightforward. Since Rapid Type Analysis

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 59

1 resolveCalls(F; SL; IL)
2 SR ;
3 for each s 2 SL : s 62 SD
4 Q f< s; f; t; P >2 IL j f 2 F; t 2 F; P 2 2

Cg
5 if jQj = 1
6 SR SR [fsg

(a) Indirect call resolution algorithm for use with RTA.

1 resolveVirtualCalls(F; SV ; I)
2 SR ;
3 for each s 2 SV
4 Q f< s; f; t; P >2 I j f 2 F; t 2 F; P 2 2C : P \Es 6= ;g
5 if jQj = 1
6 SR SR [fsg

(b) Virtual function call resolution algorithm for use with any analysis.

Figure 5.1: Two algorithms for resolving indirect function calls. Algorithm (a) will only
work with RTA, but it resolves all kinds of indirect calls (virtual, function pointer, and
pointer-to-member). Algorithm (b) is completely general and only requires that analysis
somehow calculate a set Es � C of possible classes for each virtual call site s.

computes a live call graph, it is implicitly determining the set of callable functions at each

virtual call site. Therefore, resolving the virtual calls is simply a matter of going back

over each virtual call site and determining whether there is only one possible function call

target.

Figure 5.1 shows two algorithms for resolving virtual calls in the context of the notation

established in the previous chapters. If RTA has been used, then the second algorithm is

more straightforward: it simply says that any call site that has only one potential target

(live call instance) can be resolved. This algorithm works for all types of calls, not just

virtual calls, and is implemented as a simple post-pass to the RTA algorithm.

However, if some other algorithm has been used to compute the set of live classes, then

the algorithm of Figure 5.1(b) can be employed. Class Hierarchy Analysis (which will be

described in more detail later in this chapter) is a degenerate case in which we simply

assume CL = C.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 60

5.2 Resolving Virtual Calls

So far we have assumed that resolving a call is a simple matter, and that all that we

need to do is to identify the proper statically bindable target function and the problem is

solved. Unfortunately, performing the actual resolution is not always straightforward.

Consider the program example in Figure 4.2 on page 42. The �rst two calls can be

resolved as

B* p = new B;

int result1 = p->B::foo(1);

int result2 = p->B::foo();

because the static type of p is B, the same type to which the virtual call is being resolved.

The third call can also be resolved by RTA to a call to B::foo() because there are no A

objects created by the program. However, the resolution can not simply be

A* q = p;

int result3 = q->B::foo();

because the type of q is A, so the resolved expression would contain a type error. When the

call is resolved to a method of a derived class of the static class type of the call expression,

a down-cast must be included in the modi�ed call expression. The correct resolution is

A* q = p;

int result3 = ((B*) q)->B::foo();

There are two potential problems that can result from the down-cast. First of all, in

the example above, the class B might not be in scope at the point of the call because its

de�nition is in a separate include �le. If the optimization is being done in the back-end,

this is not a problem provided that the address of B::foo() is available.

If the optimization is being performed as a source-to-source transformation, then the

absence of B's de�niton will prevent the application of the optimization unless the compiler

has access to all class de�nitions, not just those that are in scope. The compiler in which

we implemented RTA, Montana, is an example of this type: it keeps all global class

declarations in a \code store" [Barton et al. 1994] that is available at all phases of the

compilation process. Note that even in such an environment, if the class B were a local

class of some function, then the optimization could not be applied.

The second problem raised by the down-cast is that if there were multiple possible

dynamic types for q, the adjustment to the this pointer might be variable even though

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 61

the target function had been resolved. This problem will only occur when casting from

a virtual base class to a derived class, which is disallowed in C++ for the static cast

operator. (Note that the problem does not occur in the standard Sun object model for

Java, because there are never any adjustments to the this pointer).

Section 7.4 describes how the type information computed by RTA can be used to de-

termine if the down-cast can be applied statically. If this is not possible, the optimization

can still be performed if the standard two-column object model of C++ [Ellis and Strous-

troup 1990] is used: the this pointer adjustment can be calculated dynamically from the

o�sets in the virtual function table, just as though a virtual call were being performed,

and then the statically bound call can be made. However, with a thunk object model (in

which a non-zero this pointer adjustment is performed by a thunk which then jumps to

the target function), the necessary information is unavailable and the optimization can

not be performed.

In practice, the down-casting problem is quite rare. However, if the compiler does not

have a \global" view of the class hierarchy, the scoping problem may signi�cantly limit

optimization potential.

5.3 Software Architecture

This section describes the architecture of the software for performing both the opti-

mizations and the measurements described in this chapter.

5.3.1 Optimizer Architecture

To evaluate our optimizations, both static analysis of the benchmark's source code and

dynamic analysis of its execution are required. Our system's architecture is illustrated in

Figure 5.2.

A source program is fed into the prototype C++ compiler, which parses and type-

analyzes the program. The intermediate form generated by the compiler is read in by our

static analysis system, which generates the CHG and PVG, and then applies the Rapid

Type Analysis algorithm. The output from this is a list of virtual call sites that can be

resolved and a list of classes that need not have a virtual function table (VFT).

Since the prototype compiler does not yet generate code, this information is passed to

the Eliminator, which modi�es the source code to resolve the virtual calls. This code is

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 62

Statistics

Program

prototype
C++ compiler

xtrace

dynamic
analysis

static
analysis

Eliminator

Graphical
Browser

Optimized
 Program

Figure 5.2: Eliminator architecture

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 63

then compiled and executed to verify that the resolved virtual functions do not change

the results of the program, and to obtain speedup information.

The Eliminator was only able to generate compilable code for a few of the benchmarks

because when the calls are resolved at the source level, many of the resolved calls are to

methods of subclasses that are not in scope at the point of call. Therefor, the output of

the Eliminator was used primarily to test the correctness of our transformation, rather

than to provide comprehensive speedup numbers.

5.3.2 Measurements Architecture

Along with the optimizer, a number of other components allow us to collect static

and dynamic statistics about the benchmarks. The source program is compiled with the

standard xlC compiler and traced with the xtrace tool [Nair 1994], which is similar in

design to QPT. This allows us to collect statistics on run-time calling behavior, which is

combined with the results of the static analysis to determine how many virtual calls are

being eliminated at run-time by our analysis. Information from the executable �le image

is also collected for use in code size reduction measurements.

One di�culty with collecting these measurements is that inlining, which is pervasive

in C++ programs, changes the structure of the call graph. So to get frequency counts for

the virtual call sites, we had to compile the programs with the \-g" option, which turns

o� optimization and includes line number tables in the executable �le.

Since virtual call sites are not resolved by the existing compiler, the number of virtual

calls is independent of whether the program is compiled with optimization. We therefore

used the optimized executable to obtain statistics about non-virtual calls, and the unop-

timized executable to obtain statistics about virtual calls. In the process, we discovered

that in one application, 65% of the function calls were being inlined!

5.3.3 Timings

All timing trials were conducted on an unloaded IBM RS/6000 model 41T workstation,

which contains an 80 MHz PowerPC 601 processor, 64 MB of RAM, and 2 GB of disk.

Trials were run twelve times, the �rst and last result discarded, and the remaining trials

averaged.

The operating system was AIX version 3.2.5; the compiler was xlC (CSet++) version

3.1.32.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 64

5.4 Experimental Results

In this section we evaluate the ability of the three fast static analysis methods to solve

the problems that were outlined in the introduction: execution time performance, code

size, and perceived program complexity. Where possible, we will use dynamic measurement

information to place an upper limit on what could be achieved by perfect static analysis.

5.4.1 Methodology

Our measurements were gathered by reading the C++ source code of our benchmarks

into a prototype C++ compiler being developed at IBM. After type analysis is complete,

we build a call graph and analyze the code. Since the prototype compiler is not yet

generating code reliably enough to run large benchmarks, we compile the programs with

the existing IBM C++ compiler on the RS/6000, xlC. The benchmarks are traced, and

their executions are simulated from the instruction trace to gather relevant execution-time

statistics. We then use line number and type information to match up the call sites in the

source and object code.

We used both optimized and unoptimized compiled versions of the benchmarks. The

unoptimized versions were necessary to match the call sites in the source code and the

object code, because optimization includes inlining, which distorts the call graph. How-

ever, existing compilers can not resolve virtual function calls, so optimization does not

change the number of virtual calls, although it may change their location, especially when

inlining is performed. Therefore, turning optimization (and inlining) o� does not a�ect

our measurements of the number of resolved virtual function calls. Unoptimized code was

only used for matching virtual call sites. All measurements are for optimized code unless

otherwise noted.

Because our tool analyzes source code, virtual calls in library code were not available

for analysis. Only one benchmark, simulate, contained virtual calls in the library code.

They are not counted when we evaluate the e�cacy of static analysis, since had they been

available for analysis they might or might not have been resolved.

The information required by static analysis is not large, and could be included in

compiled object �les and libraries. This would allow virtual function calls in library code

to be resolved, although it would not confer the additional bene�ts of inlining at the

virtual call site.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 65

Benchmark Lines Description

sched 5,712 RS/6000 Instruction Timing Simulator

ixx 11,157 IDL speci�cation to C++ stub-code translator

lcom 17,278 Compiler for the \L" hardware description language

hotwire 5,335 Scriptable graphical presentation builder

simulate 6,672 Simula-like simulation class library and example

idl 30,288 SunSoft IDL compiler with demo back end

taldict 11,854 Taligent dictionary benchmark

deltablue 1,250 Incremental data
ow constraint solver

richards 606 Simple operating system simulator

Table 5.1: Benchmark Programs. Size is given in non-blank lines of code.

5.4.2 Benchmarks

Table 5.1 describes the benchmarks we used in this study. Of the nine programs,

we consider seven to be \real" programs (sched, ixx, lcom, hotwire, simulate, idl

and taldict) which can be used to draw meaningful conclusions about how the analysis

algorithms will perform. idl and taldict are both programs made up of production code

with demo drivers; the rest are all programs used to solve real problems. The remaining

two benchmarks, richards and deltablue, are included because they have been used in

other papers and serve as a basis for comparison and validation.

Table 5.2 provides an overview of the static characteristics of the programs in absolute

terms. Library code is not included. The number of functions, call sites, and virtual

call arcs gives a composite picture of the static complexity of the program. Live call

sites are those which were executed in our traces. Non-dead virtual call sites are those

call sites, both resolved and unresolved, that remained in the program after our most

aggressive analysis (RTA) removed some of the dead functions and the virtual call sites

they contained.

Table 5.3 provides an overview of the dynamic (execution time) program characteristics

for optimized code. Once again, all numbers are for user code only. The number of

instructions between virtual function calls is an excellent (though crude) indication of

how much potential there is for speedup from virtual function resolution. Under IBM's

AIX operating system and C++ run-time environment a virtual function call takes 12

instructions, meaning that the user code of taldict could be sped up by a factor of two

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 66

Program Code Size Fns Call Live Virtual Sites Virtual
(bytes) Sites Sites Total Live Instances

sched 99,888 237 530 184 34 33 58

ixx 178,636 1,108 3,601 767 467 399 1,752

lcom 164,032 779 2,794 1,653 458 446 3,661

hotwire 45,416 230 1,204 550 48 6 83

simulate 28,900 242 580 141 36 23 41

idl 243,748 856 3,671 882 1,248 1,198 3,486

taldict 20,516 429 783 47 79 14 116

deltablue N.A. 103 372 201 3 3 11

richards 9,744 78 174 68 1 1 5

Table 5.2: Totals for static (compile-time) quantities measured in this chapter. All quan-
tities are measured for user code only (libraries linked to the program are not included).

Program Instrs. Function Virtual Instrs. betw.
Executed Calls [3] Calls [5] Virtual Calls

sched 106,901,207 2,302,003 967,789 110

ixx 7,919,945 248,391 47,138 168

lcom 107,826,169 4,210,059 1,099,317 98

hotwire 4,842,856 189,160 33,504 145

simulate 1,230,305 57,537 10,848 113

idl 776,792 33,826 14,211 55

taldict 837,496,535 39,401,445 35,060,980 23

deltablue 10,492,752 558,028 205,100 51

richards 86,916,173 2,407,782 657,900 132

Table 5.3: Totals for dynamic (run-time) quantities measured in this chapter. All quanti-
ties are for user code only (libraries linked to the program are not included).

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 67

0%

10%

20%

30%

40%

50%

60%

70%

80%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

C
al

l S
ite

s
(O

pt
im

iz
ed

 U
se

r
C

od
e)

Indirect Function

Direct Function

Direct Method

Virtual Method

Figure 5.3: Static Distribution of Function Call Types

if all virtual calls are resolved (as they in fact are).

Our graphs all use percentages because the absolute numbers vary so much. Tables 5.2

and 5.3 include the totals for all subsequent graphs.

Figure 5.3 is a bar graph showing the distribution of types of live call sites contained

in the user code of the programs; Figure 5.4 shows the analogous �gures for the number

of dynamic calls in user code. Direct (non-virtual) method calls account for an average of

51% of the static call sites in the seven large applications, but only 39% of the dynamic

calls. Virtual method calls account for only 21% of the static call sites, but a much more

signi�cant 36% of the total dynamic calls.

Indirect function calls are used sparely except by deltablue, and pointer-to-member

calls are only used by ixx, and then so infrequently that they do not appear on the bar

chart.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 68

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

C
al

ls
 (

O
pt

im
iz

ed
 U

se
r

C
od

e)

Indirect Function

Direct Function

Direct Method

Virtual Method

Figure 5.4: Dynamic Distribution of Function Call Types

Since non-virtual and virtual method calls are about evenly mixed, and direct (non-

method) calls are less frequent, we conclude that the programs are written in a rela-

tively object-oriented style. However, only some of the classes are implemented in a

highly reusable fashion, because half of the method calls are non-virtual. The exception

is taldict, with 89% of the dynamic function calls virtual: taldict uses the Taligent

frameworks, which are designed to be highly re-usable. As use of C++ becomes more

widespread and code reuse becomes more common, we expect that programs will become

more like taldict, although probably not to such an extreme.

Note that we assume that trivially resolvable virtual function calls are implemented as

direct calls, and count them accordingly throughout our measurements. That is, the call

to foo() in

A a;

a.foo();

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 69

is considered a direct call even if foo() is a virtual function. This is consistent with the

capabilities of current production C++ compilers, but di�erent from the assumption used

in some related work, in particular that of Pande and Ryder.

Our results di�er, in some cases signi�cantly, from those reported in two previous stud-

ies of C++ virtual function call resolution [Calder and Grunwald 1994; Aigner and H�olzle

1996]. This would seem to indicate that there is considerable variation among applications.

Where possible we have used their benchmarks. However, many of their benchmarks are

written in G++, the Gnu project's version of C++, which contains incompatible exten-

sions to the language.

Considerable additional work remains to be done for benchmarking of C++ programs.

While the SPEC benchmark suite has boiled down \representative" C code to a small

number of programs, it may well be that such an approach will not work with C++

because it is a more diverse language with more diverse usage patterns.

5.4.3 Live Classes

The fundamental basis of the Rapid Type Analysis algorithm is its computation of a

set of live classes, CL. RTA is superior to Class Hierarchy Analysis because of its use of

live class information.

Figure 5.5 shows the ability of RTA to �nd dead classes in our benchmarks, as compared

to the total number of classes that were not created during our traces of the benchmarks.

In this and most subsequent graphs, we use dynamic information to provide an upper

bound on the performance of static analysis. Such an upper bound is always shown using

a white bar.

The point of such \upper bound" measurements is to provide some information as to

how well our RTA algorithm is doing against what could be achieved by the best possible

static algorithm. Of course, since we are using a dynamic trace for the upper bound, all

we know is that the actual best precision of a static analysis algorithm lies somewhere

between the precision achieved by RTA and the hypothetical precision shown by using a

dynamic trace.

If the di�erence between RTA and the dynamic trace is small, then the measurements

have provided strong information: RTA has done very well, and there is not much room

for improvement by other algorithms (as is the case for the benchmarks sched, simulate,

taldict, and deltablue in Figure 5.5). If the di�erence between RTA and the dynamic

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 70

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

sched ixx lcom simulate idl taldict deltablue richards

Benchmark

C
la

ss
es

Eliminated by RTA

Not Created

Figure 5.5: Unused Classes: RTA Algorithm vs. Dynamic Trace.

trace is large, then the measurements have only provided weak information: there may be

room for improvement, or there may not (as is the case with the benchmarks ixx, lcom,

idl, and richards).

Unsurprisingly, RTA is only 100% precise for two synthetic benchmarks, taldict and

deltablue. In real programs, RTA is unable to create a precise call graph, and therefore

the set of live classes is also imprecise. The only benchmark for which no dead classes

were found is also the synthetic richards benchmark.

While it is di�cult to predict what kind of performance impact the live class infor-

mation will have, the measurements in Figure 5.5 do show some promise that RTA-based

optimizations will be superior to those performed using more primitive analysis methods

like CHA.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 71

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

R
es

ol
ve

d
V

irt
ua

l C
al

l S
ite

s

UN

CHA

RTA

Max. Possible

Figure 5.6: Resolution of Possibly Live Static Callsites

5.4.4 Resolution of Virtual Function Calls

When a virtual call site always calls the same function during one or more runs of the

program, we say that it is monomorphic. If it calls multiple functions, it is polymorphic.

If the optimizer can prove that a call that was monomorphic during a single execution will

be monomorphic under all program executions, then the call can be resolved statically.

Polymorphic call sites can not be resolved unless the enclosing code is cloned or type tests

are inserted.

The performance of the analyses for resolving virtual function calls is shown in Fig-

ures 5.6 (which presents the static information for the call sites) and 5.7 (which presents

the dynamic information for the calls in our program traces). Together with the remaining

graphs they compare the performance of the three static analysis algorithms, and they all

use a consistent labeling to aid in interpretation.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 72

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

R
es

ol
ve

d
V

irt
ua

l C
al

ls

UN

CHA

RTA

Monomorphic

Figure 5.7: Resolution of Dynamic Calls

In the static measurements of Figure 5.6, the white bar (the \region of opportunity" for

�ner analysis) represents call sites that were either dynamically monomorphic, or were not

executed during the trace but were not eliminated as dead code by RTA. In Figure 5.7,

which measures dynamic calls, the white bar represents the monomorphic calls. The

benchmarks deltablue and richards are fully polymorphic at run-time, so there are no

bars for those benchmarks in the �gure.

Call sites identi�ed as dead by Rapid Type Analysis were not counted, regardless of

whether they were resolved. This was done so that the static and dynamic measurements

could be more meaningfully compared, and because it seemed pointless to count as resolved

a call site in a function that can never be executed. However, this has relatively little e�ect

on the overall percentages.

Figure 5.7 shows that for for �ve out of seven of the large benchmarks, the most

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 73

powerful static analysis, RTA, resolves all or almost all of the virtual function calls. In

other words, in �ve out of seven benchmarks, RTA does an essentially perfect job. On

average, RTA resolves 71% of the dynamic virtual calls in the seven large benchmarks.

CHA is also quite e�ective, resolving an average of 51%, while UN performs relatively

poorly, resolving an average of 15% of the dynamic virtual calls.

We were surprised by the poor performance of Unique Name, since Calder and Grun-

wald found that Unique Name resolved an average of 32% of the virtual calls in their

benchmarks. We are not sure why this should be so; possibly our benchmarks, being on

average of a later vintage, contain more complex class hierarchies. UN relies on there only

being a single function in the entire application with a particular signature.

Our benchmarks are surprisingly monomorphic; only two of the large applications (ixx

and lcom) exhibit a signi�cant degree of polymorphism. We do not expect this to be typical

of C++ applications, but perhaps monomorphic code is more common than is generally

believed.

A problem arose with one program, lcom, which is not type-safe: applying CHA or RTA

generates some specious call site resolutions. We examined the program and found that

many virtual calls were potentially unsafe, because the code used down-casts. However,

most of these potentially unsafe calls are in fact safe, because the program uses a collection

class de�ned to hold pointers of type void*. Usually, inspection of the code shows that

the down-casts are simply being used to restore a void* pointer to the original type of

the object inserted into the collection.

We therefore selectively turned o� virtual function call resolution at the call sites that

could not be determined to be safe; only 7% of the virtual calls that would have been

resolved by static analysis were left unresolved because of this change (they are counted

as unresolved monomorphic calls). We feel that this is a reasonable course because a

programmer trying to optimize his or her own program might very well choose to follow

this course rather than give up on optimization altogether; readers will have to use their

own judgment as to whether this would be an acceptable programming practice in their

environments. However, a better alternative in the case of lcom would simply be to

use template for the collection classes, thereby avoiding the need for the down-casting

operations.

The only benchmark to use library code containing virtual calls was simulate, which

uses the task library supplied with AIX. Slightly less than half of the virtual calls were

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 74

made from the library code, and about half of those calls were monomorphic (and therefore

potentially resolvable). We have not included virtual calls in library code in the graphs

because the corresponding code was not available to static analysis.

Why Rapid Type Analysis Wins

Since Class Hierarchy Analysis is a known and accepted method for fast virtual function

resolution, it is important to understand why RTA is able to do better.

RTA does better on four of seven programs, although for idl the improvement is

minor. For ixx, RTA resolves a small number of additional static call sites (barely visible

in Figure 5.6), which account for almost 20% of the total dynamic virtual function calls.

The reason is that those calls are all to frequently executed string operations. There is a

base class String with a number of virtual methods, and a derived class UniqueString,

which overrides those methods. RTA determines that no UniqueString objects are created

in ixx, and so it is able to resolve the virtual call sites to String methods. These call sites

are in inner loops, and therefore account for a disproportionate number of the dynamic

virtual calls.

RTA also makes a signi�cant di�erence for taldict, resolving the remaining 19% of

unresolved virtual calls. RTA is able to resolve two additional call sites because they are

calls where a hash table class is calling the method of an object used to compare key

values. The comparison object base class provides a default comparison method, but the

derived class used in taldict overrides it. RTA �nds that no instances of the base class

are created, so it is able to resolve the calls.

The hotwire benchmark is a perfect example of the class library scenario: a situation

in which an application is built using only a small portion of the functionality of a class

library. The application itself is a simple dynamic overhead transparency generator; it

uses a library of window management and graphics routines. However, it only creates

windows of the root type, which can display text in arbitrary fonts at arbitrary locations.

All of the dynamic dispatch occurs on redisplay of sub-windows, of which there are none

in this application. Therefore, all of the live virtual call sites are resolved.

Why Fast Static Analysis Fails

One benchmark, sched, stands out for the poor performance of all three static anal-

ysis algorithms evaluated in this chapter. Only 10% of the dynamic calls are resolved,

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 75

even though 30% of the static call sites are resolved, and 100% of the dynamic calls are

monomorphic. Of course, a function may be monomorphic with one input but not with

another. However, sched appears to be completely monomorphic.

The unresolved monomorphic virtual call sites are all due to one particular program-

ming idiom: sched de�nes a class Base and two derived classes Derived1 and Derived2

(not their real names). Base has no data members, and de�nes a number of virtual func-

tions whose implementation is always assert(false) { in other words, they will raise an

exception when executed. In essence, Base is a strange sort of abstract base class.

Derived1 and Derived2 each implement a mutually exclusive subset of the methods

de�ned by Base, and since Base has no data members, this means that these two object

types are totally disjoint in functionality. It is not clear why the common base class is

being used at all.

RTA determines that no objects of type Base are ever created. However, the calls

to the methods of Derived1 and Derived2 are always through pointers of type Base*.

Therefore, there are always two possible implementations of each virtual function: the

one de�ned by one of the derived classes, and the one inherited from Base by the other

derived class.

Depending on your point of view, this is either an example of the inability of static

analysis to handle particular coding styles, or another excellent reason not to write strange

code.

The other benchmark for which none of the static analyses do a very good job is lcom:

45% of the virtual calls are monomorphic but unresolved. 40% of the virtual calls are from

a single unresolved call site. These calls are all through an object passed in from a single

procedure, further up in the call graph. That procedure creates the object with new, and

it is always of the same type. While it would probably not be resolved by simple
ow

analysis, it could be resolved by alias analysis.

What kinds of programming idioms are not amenable to fast static analysis? CHA will

resolve monomorphic virtual calls for which there is only a single possible target. RTA

will also eliminate monomorphic calls when only one of the possible target object types is

used in the program. The kind of monomorphic calls that can't be resolved by RTA occur

when multiple related object types are used independently, for instance if Square and

Circle objects were each kept on their own linked list, instead of being mixed together.

This is known as parametric polymorphism.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 76

0%

10%

20%

30%

40%

50%

60%

70%

sched ixx lcom hotwire simulate idl taldict richards

Benchmark

D
ea

d
U

se
r

C
od

e

CHA

RTA

Unexecuted

Figure 5.8: Removal of Dead Code by Static Analysis

Parametric polymorphism is what occurs in lcom and, in a degenerate fashion, in

sched. Parametric polymorphism presents the major opportunity for alias analysis to im-

prove upon the fast static techniques presented in this dissertation, since it can sometimes

determine that a pointer can only point to one type of object even when multiple possible

object types have been created.

5.4.5 Code Size

Because they build a call graph, Class Hierarchy Analysis and Rapid Type Analysis

identify some functions as dead: those that are not reachable in the call graph. RTA

is more precise because it removes virtual call arcs to methods of uninstantiated objects

from the call graph.

Figure 5.8 shows the e�ect of static analysis on user code size. As before, white

represents the region of opportunity for �ner analysis { code that was not executed during

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 77

the trace and might be dead or might be executed when the benchmark is run with a

di�erent input. Code size is measured in bytes of compiled object code.

Our measurements include only �rst-order e�ects of code size reduction due to the elim-

ination of entire functions. There is a secondary code-size reduction caused by resolving

virtual call sites, since calling sequences for direct calls are shorter than for virtual calls.

We also did not measure potential code expansion (or contraction) caused by inlining of

resolved call sites. Finally, due to technical problems our code size measurements are for

unoptimized code, and we were not able to obtain measurements for deltablue.

On average, 42% of the code in the seven large benchmarks is not executed during

our traces. Class Hierarchy Analysis eliminates an average of 24% of the code from these

benchmarks, and Rapid Type Analysis gets about one percent more.

CHA and RTA do very well at reducing code size: in �ve of the seven large benchmarks,

unexecuted code that was not removed by static analysis accounts for less than 20% of

the total program size. Only ixx and idl contain signi�cant portions of code that was

neither executed nor eliminated (about 40%).

We were surprised to �nd that despite the fact that RTA does substantially better

than CHA at virtual function resolution, it does not make much di�erence in reducing

code size. Unique Name does not remove any functions because it only resolves virtual

calls; it does not build a call graph.

5.4.6 Static Complexity

Another important advantage of static analysis is its use in programming environments

and compilers. For instance, in presenting a user with a program browser, the task of

understanding the program is signi�cantly easier if large numbers of dead functions are

not included, and if virtual functions that can not be reached are not included at virtual

call sites.

In addition, the cost and precision of other forms of static analysis and optimization

are improved when the call graph is smaller and less complex.

Figure 5.9 shows the e�ect of static analysis on eliminating functions from the call

graph. This is similar to Figure 5.8, except that each function is weighted equally, instead

of being weighted by the size of the compiled code. Therefore, Figure 5.9 shows the number

of functions eliminated rather than the reduction in code size. As we stated above, since

Unique Name does not build a call graph, it does not eliminate any functions.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 78

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

D
ea

d
U

se
r

F
un

ct
io

ns

CHA

RTA

Unexecuted

Figure 5.9: Elimination of Dead Functions by Static Analysis

Once again, Class Hierarchy Analysis eliminates a large number of functions, and Rapid

Type Analysis eliminates a few more.

Figure 5.10 shows the e�ect of static analysis on the number of virtual call instances

in the call graph. As de�ned in Section 3.4, a call instance is an arc in the call graph from

a virtual call site to one of its potential dynamic targets.

Class Hierarchy Analysis removes call instances because it eliminates functions, and

so any call instances that they contain are also removed. Rapid Type Analysis can both

remove dead functions and remove virtual call instances in live functions. For example,

refer back to Figure 4.2 at the beginning of this chapter: even though main() is a live

function, RTA removes the call instance to A::foo() at the call that produces result3

because it discovers that no objects of type A are ever created.

Surprisingly, despite the large number of virtual call sites that are resolved in most

programs, relatively few virtual call instances are removed in three of the seven large

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 79

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sched ixx lcom hotwire simulate idl taldict deltablue richards

Benchmark

D
ea

d
C

al
l I

ns
ta

nc
es

CHA

RTA

Unexecuted

Figure 5.10: Elimination of Virtual Call Instances by Static Analysis

benchmarks. In those programs, the virtual function resolution is due mostly to Class

Hierarchy Analysis. CHA, by de�nition, resolves a function call when there is statically

only a single possible target function at the call site. Therefore, the call site is resolved,

but the call instance is not removed. On the other hand, because RTA actually removes

call instances in live functions, it may eliminate substantial numbers of call instances, as

is seen in the case of hotwire.

5.4.7 Speed of Analysis

We have claimed that a major advantage of the algorithms described in this dissertation

is their speed. Table 5.4 shows the cost of performing the Class Hierarchy Analysis and

Rapid Type Analysis algorithms on an 80 MHz PowerPC 601, a modest CPU by today's

standards. The total time to compile and link the program is also included for comparison.

We do not include timings for Unique Name because we implemented it in a manner that

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 80

Size Analysis Time Compile RTA
Benchmark (lines) CHA RTA Time Overhead

sched 5,712 1.90 1.94 921 < 0:1%

ixx 11,157 5.12 5.22 367 1.4%

lcom 17,278 6.27 6.50 218 3.0%

hotwire 5,335 2.05 2.06 160 1.3%

simulate 6,672 2.67 2.75 49 5.6%

idl 30,288 5.71 6.42 450 1.4%

taldict 11,854 1.66 1.78 45 4.0%

deltablue 1,250 0.42 0.44 18 2.4%

richards 606 0.30 0.32 9 3.6%

Table 5.4: Compile-Time Cost of Static Analysis (timings are in seconds on an 80 MHz
PowerPC 601). Compile time is for optimized code, and includes linking. Rightmost
column shows the overhead of adding RTA to the compilation process.

maximized re-use of our other code, rather than optimizing the Unique Name algorithm

itself. Since Unique Name performed poorly compared to CHA and RTA, we did not feel

it was worth the extra e�ort of a \native" implementation.

RTA is not signi�cantly more expensive than CHA. This is because the major cost for

both algorithms is that of traversing the program and identifying all the call sites. Once

this has been done, the actual analysis proceeds very quickly.

RTA analyzes an average of 3310 non-blank source lines per second, and CHA is only

marginally faster. The entire 17,278-line lcom benchmark was analyzed in 6.5 seconds,

which is only 3% of the time required to compile and link the code. On average, RTA

took 2.4% of the total time to compile and link the program.

We expect that these timings could be improved signi�cantly; our implementation is

a prototype, designed primarily for correctness rather than speed. No optimization or

tuning has been performed yet.

Even without improvement, 3300 lines per second is fast enough to include in a pro-

duction compiler without signi�cantly increasing compile times.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 81

5.5 Related Work

5.5.1 Type Prediction for C++

Aigner and H�olzle [1996] compared the execution time performance improvements due

to elimination of virtual function calls via class hierarchy analysis and pro�le-based type

prediction. Our work di�ers from theirs in that we compare three di�erent static analysis

techniques, and in that we demonstrate the ability of static analysis to reduce code size and

reduce program complexity. We also use dynamic information to bound the performance

of static analysis.

Type prediction has advantages and disadvantages compared with static analysis. Its

advantages are that it resolves more calls, and does not rely on the type-correctness of

the program. Its disadvantages are that it requires the introduction of a run-time test; it

requires pro�ling; and it is potentially dependent upon the input used during the pro�le.

Type prediction can always \resolve" more virtual calls than static analysis, because

it precedes a direct call with a run-time test. Call sites resolved by static analysis do not

need to perform this test, and one would therefore expect the execution time bene�t from

static resolution to be greater than that from type prediction. This trend is indeed evident

in Aigner and H�olzle's execution time numbers: for only one of their benchmarks does type

feedback provide more than a 3% speedup over Class Hierarchy Analysis. This is despite

the fact that in all but one of the benchmarks, type prediction resolves a signi�cantly

larger number of virtual calls.

We performed a simple experiment to evaluate the bene�ts of type analysis versus

type prediction. A program consisting of a loop that repeatedly calls a virtual function

was timed, both without virtual function resolution, with static resolution, and with type

prediction. The latter two were tested with and without inlining; the called function was

trivial so that the e�ect of inlining is maximized. The results are shown in Figure 5.11.

At 100% accuracy, type prediction does quite well, although static resolution is still

signi�cantly faster. But as the accuracy of type prediction decreases, static resolution looks

better and better. Type prediction can even worsen the performance of the program:

without inlining, type prediction must achieve 54% accuracy to break even, and with

inlining it must achieve 37% accuracy.

However, computer science is a �eld in which it pays to play the odds. Type prediction

often achieves accuracy close to 100%. Ultimately, we believe that a combination of static

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 82

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

Percentage Correctly Predicted

Se
c

o
nd

s
 (

80
 M

H
z

Po
w

e
rP

C
 6

01
)

Prediction w/Inlining

Prediction w/o Inlining

Dynamic Dispatch

Static Resolution w/Inlining

Static Resolution w/o Inlining

Figure 5.11: Comparison of Type Prediction vs. Virtual Function Resolution

analysis with type prediction is likely to be the best solution. But between the two, static

resolution is preferable both because of its superior performance and because it is not

subject to degradation with di�erent inputs.

In Aigner and H�olzle's study, excluding the trivial benchmarks deltablue and richards

and weighting each program equally, Class Hierarchy Analysis resolved an average of 27%

of the dynamic virtual function calls (and a median of 9%). Aigner and H�olzle said they

were surprised by the poor performance of CHA on their benchmarks, since others had

found it to perform well. In our measurements, CHA resolved an average of 51% of the

dynamic virtual calls, so it seems that there is considerable variation depending upon the

benchmark suite. In fact, we got di�erent results for the one large benchmark that we

had in common, ixx, due to a di�erent input �le and possibly a di�erent version of the

program.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 83

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

9:deriv1 7:deriv2 3:family 5:garage 10:objects 1:office 12:primes 8:shapes 6:vcircle

Benchmark

R
es

ol
ve

d
V

irt
ua

l C
al

l S
ite

s
UN

CHA

RTA

Max. Possible

Figure 5.12: Resolution of Static Callsites { Alias Analysis Benchmarks

5.5.2 Alias Analysis for C++

The most precise, and also most expensive, proposed static method for resolving virtual

function calls is to use interprocedural
ow-sensitive alias analysis. Pande and Ryder [1996;

1994] have implemented an alias analysis algorithm for C++ based on Landi et al.'s [1993]

algorithm for C. This analysis is then used to drive virtual function elimination. They

give preliminary results for a set of 19 benchmark programs, ranging in size from 31 to

968 lines of code.

In comparison with our RTA algorithm, which processes about 3300 lines of source

code per second (on an 80 MHz PowerPC 601), the speed of their algorithm ranges from

0.4 to 55 lines of source code per second (on a Sparc-10). At this speed, alias analysis will

not be practical in any normal compilation path.

We have obtained their benchmark suite; Figure 5.12 shows the performance of our

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 84

static analysis algorithms on the 9 programs that we could execute (their analysis is

purely static, and not all of their programs were actually executable). Of these 9, two are

completely polymorphic (no resolution is possible), and two were completely or almost

completely resolved by Rapid Type Analysis or Class Hierarchy Analysis. So for four out

of nine, RTA does as well as alias analysis.

RTA resolved 33% of the virtual call sites in objects, compared to about 50% by alias

analysis (for comparative data, see their paper [Pande and Ryder 1996]). For the remain-

ing four (deriv1, deriv2, family, and office) fast static analysis did not resolve any

virtual call sites, and signi�cant fractions of the call sites were dynamically monomorphic.

Alias analysis was able to resolve some of the virtual call sites in deriv1 and deriv2,

and all of the virtual call sites in family and office. However, the latter two programs

are contrived examples where aliases are deliberately introduced to objects created in the

main routine.

Because of the small size and unrealistic nature of the benchmarks used by Pande and

Ryder, we hesitate to make any generalizations based on the results of our comparison.

Two of our seven large benchmarks, sched and lcom, appear to be programs for which

alias analysis could perform better than RTA. These programs make use of parametric

polymorphism, as discussed in Section 5.4.4. We expect programs embodying this pro-

gramming style to be the main bene�ciaries of alias analysis, as applied to the virtual

function resolution problem.

Over all, our benchmarks and Pande and Ryder's indicate that for most programs, there

is relatively little room for improvement by alias analysis over RTA. However, there are

de�nitely cases where alias analysis will make a signi�cant di�erence. The ideal solution

would be to use RTA �rst, and only employ alias analysis when RTA fails to resolve a

large number of monomorphic calls.

Like Pande and Ryder, Carini et al. [1995] have devised an alias analysis algorithm

for C++ based on an algorithm for C and Fortran [Choi et al. 1993; Burke et al. 1994].

We are currently collaborating with them on an implementation of their algorithm within

our analysis framework. This will allow a direct comparison of both the precision and the

e�ciency of alias analysis.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 85

5.5.3 Other Work in C++

Porat et al. [1996] implemented the Unique Name optimization in combination with

type prediction in the IBM xlC compiler for AIX, and evaluated the results for 3 bench-

mark programs. Their two large benchmarks were identical to two of ours: taldict and

lcom. They achieved a speedup of 1.25 on taldict and a speedup of 1.04 on lcom, us-

ing a combination of Unique Name and type prediction. Our estimates and experiments

indicate that a signi�cantly higher speedup is achievable for taldict using Rapid Type

Analysis.

Calder and Grunwald [1994] implemented the �rst virtual function resolution algorithm

for C++. Their Unique Name algorithm (which might more accurately be called \Unique

Signature") is very fast, since it only requires a linear scan over the method declarations

in the program. Calder and Grunwald implemented Unique Name as a link-time analysis,

and found it to be quite e�ective. With their benchmarks, it resolved anywhere from

2.9% to 70.3% of the virtual calls executed by the program. We found it to be not nearly

so e�ective on our benchmarks, and it was signi�cantly outperformed by Rapid Type

Analysis.

Srivastava [1992] developed an analysis technique with the sole purpose of eliminating

unused procedures from C++ programs. He builds a graph starting at the root of the call

graph. Virtual call sites are ignored; instead, when a constructor is reached, the referenced

virtual methods of the corresponding class are added to the graph. His algorithm could

also be used to resolve virtual function calls by eliminating uninstantiated classes from

consideration and then using Class Hierarchy Analysis. His technique is less general than

RTA because the resulting graph is not a true call graph, and can not be used as a basis

for further optimization.

5.5.4 Other Related Work

Related work has been done in the context of other object-oriented languages such as

Smalltalk, SELF, Cecil, and Modula-3. Of those, Modula-3 is the most similar to C++.

Fernandez [1995] implemented virtual function call elimination as part of her study

on reducing the cost of opaque types in Modula-3. She essentially implemented Class

Hierarchy Analysis, although only for the purpose of resolving virtual calls, and not for

eliminating dead code.

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 86

Diwan et al. [1996] have investigated a number of algorithms for Modula-3, including an

interprocedural uni-directional
ow-sensitive technique, and a \name-sensitive" technique.

For the benchmarks they studied, their more powerful techniques were of signi�cant

bene�t for Modula-3, because they eliminated the NULL class as a possible target. However,

when NULL is ignored (as it is in C++), in all but one case the more sophisticated analyses

did no better than Class Hierarchy Analysis. This is interesting because we found several

cases in which Rapid Type Analysis was signi�cantly better than Class Hierarchy Analysis

{ this may indicate that class instantiation information is more important than the
ow-

based information.

Because of the wide variation we have seen even among our C++ benchmarks, it seems

unwise to extrapolate from Modula-3 results to C++. However, despite the di�erence

between their and our algorithms, the basic conclusion is the same: that fast static analysis

is very e�ective for statically typed object-oriented languages.

Dean et al. [1995] studied virtual method call elimination for the pure object-oriented

language Cecil, which includes support for multi-methods. They analyzed the class hierar-

chy as we do to determine the set of type-correct targets of a virtual method call, and used

this information to drive an intraprocedural
ow analysis of the methods. Their method

is not directly comparable to RTA: it uses more precise information within procedures,

but performs no interprocedural analysis at all. Measured speedups for benchmarks of

signi�cant size were on the order of 25%, and code size reduction was also on the order of

25%.

There has been considerable work on type inference for dynamically typed languages

[Plevyak and Chien 1994; Chambers and Ungar 1991a; Agesen 1994; Oxh�j et al. 1992]. In

a recent paper, Agesen and H�olzle [1995] showed that type inference can do as well or better

than dynamic receiver prediction in the SELF compiler, and proceeded to extrapolate

from these results to C++ by excluding dispatches for control structures and primitive

types. However, C++ and self may not be su�ciently similar for such comparisons to

be meaningful.

5.5.5 Comparison of Available Algorithms

Now that we have described our experimental results and the salient characteristics of

the various possible algorithms for solving the type analysis problem, we can return to the

hypothesis put forward at the beginning of Chapter 4. That hypothesis, which is central

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 87

Algorithm CH DCE Var PPt \Fast"

Flow-Sensitive Alias Analysis � � � �
Flow-Insensitive Alias Analysis � � � �
Single-set Alias Analysis � � �

Simple Type Propagation � � �
Rapid Type Analysis � � �
Class Hierarchy Analysis � �
No Override � �

Unique Name �
Unique Identi�er �

Figure 5.13: The Spectrum of Virtual Function Elimination Algorithms for Statically
Typed Languages. We have implemented and compared the techniques listed in bold.
CH=Builds class hierarchy; DCE=dead code elimination; Var=maintains per-variable in-
formation; PPt=maintains per-program-point information; Fast=algorithm expected to
have minimal cost relative to total compile-time.

to this dissertation, is that an algorithm exists for the type analysis problem which is close

to optimal in precision, but is not very expensive to implement or execute.

Conceptually, we illustrated this as a hypothesis that in the spectrum of algorithms,

there is a \knee" in the time cost versus e�ectiveness curve of algorithms, and that there

is an algorithm { speci�cally, Rapid Type Analysis { that is essentially at that in
ection

point (see Figure 4.1).

Our experimental results provide a strong indication that RTA usually comes close to

optimal peformance in terms of the number of resolved calls. In other words, RTA has

good \height" on the time/e�ectiveness curve. We have also shown, by implementing them

in the same framework, that the Unique Name and Class Hierarchy Analysis algorithms

are not a great deal faster than RTA.

However, what indication is there that there is not another algorithm that is not much

slower than RTA, and which can improve on its e�ectiveness in a signi�cant way? Our

measurements indicate that for our set of benchmarks, there are two benchmarks for which

signi�cant improvements might be possible, leading to an improvement over all seven large

benchmarks of about 10% in the number of resolved dynamic virtual calls.

Figure 5.13 compares a number of algorithms for the type analysis problem, in decreas-

ing order of complexity, and (except for some variants of type propagation) in monotoniclly

decreasing order of precision. Dean et al. and Diwan have both implemented variants of

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 88

type propagation.

What the �gure shows is that the algorithms that are potentially more e�ective than

RTA all have to keep per-variable information about the program, and have to examine

each line of code for its potential impact on those variables. In contrast, RTA only has to

examine the call sites and only has to keep a few global sets of information.

While this is not absolutely conclusive, it is a very good indication that more precise

algorithms are likely to be at least one or two orders of magnitude more expensive.

Therefore, we are quite con�dent that the time/e�ectiveness curve has an in
ection

point, and that RTA is at or very close to that \knee" in the curve.

5.6 Summary

We have investigated the ability of three types of static analysis to improve C++

programs by resolving virtual function calls, reducing compiled code size, and reducing

program complexity to improve both human and automated program understanding and

analysis.

We have shown that Rapid Type Analysis is highly e�ective for all of these purposes,

and is also very fast. This combination of e�ectiveness and speed make Rapid Type

Analysis an excellent candidate for inclusion in production C++ compilers.

RTA resolved an average of 71% of the virtual function calls in our benchmarks, and

ran at an average speed of 3300 non-blank source lines per second. CHA resolved an

average of 51% and UN resolved an average of only 15% of the virtual calls. CHA and

RTA were essentially identical for reducing code size; UN is not designed to �nd dead

code. RTA was signi�cantly better than CHA at removing virtual call targets.

Unique Name was shown to be relatively ine�ective, and can therefore not be rec-

ommended. Both RTA and CHA were quite e�ective. In some cases there was little

di�erence, in other cases RTA performed substantially better. Because the cost of RTA

in both compile-time and implementation complexity is almost identical to that of CHA,

RTA is clearly the best of the three algorithms.

We have also shown, using dynamic traces, that the best fast static analysis (RTA)

often resolves all or almost all of the virtual function calls (in �ve out of the seven large

benchmarks). For these programs, there is no advantage to be gained by using more

expensive static analysis algorithms like
ow-sensitive type analysis or alias analysis. Since

CHAPTER 5. RESOLUTION OF VIRTUAL FUNCTION CALLS 89

these algorithms will invariably be at least one to two orders of magnitude more expensive

than RTA, RTA should be used �rst to reduce the complexity of the program and to

determine if there are signi�cant numbers of virtual call sites left to resolve. In some

cases, this will allow the expensive analysis to be skipped altogether.

Chapter 6

De-virtualization of Inheritance

Multiple inheritance allows one class to be inherited more than once by a derived

class. There are two possible meanings to ascribe to multiple inheritance: either there are

multiple, distinct copies of the inherited class, or there is only one copy which is shared.

In C++, the latter is distinguished by declaring the inheritance arc as virtual.

Other languages have attempted to cope with the language-design problems raised by

multiple inheritance (or its omission) in varying ways. Java allows multiple inheritance of

interfaces but not of implementation; Smalltalk allows only single inheritance.

Whether virtual inheritance is an option or the default for a language, it creates a

problem in both the time and space dimensions of program performance. Because there

are multiple paths to a base object, simple o�sets can no longer be used for member

access or function table lookup, which slows down these operations. In addition, the extra

pointers required may cause the object size to increase signi�cantly.

In one benchmark that used virtual bases in a signi�cant manner, over 50% of the total

object space allocated by the program was consumed by various pointers required by the

object model [Sweeney 1997]. The object model is the set of design choices about how

objects are represented in the system, including the way in which virtual function tables

are layed out, the way in which the virtual inheritance relationships between portions

of an object are represented, and the way in which the run-time type of the object is

represented. The space overhead of virtual inheritance can be reduced by using o�sets in

the class information instead of pointers inside the object, but this in turn further slows

down member access.

Therefore it is highly desirable to be able to convert virtual inheritance to non-virtual

90

CHAPTER 6. DE-VIRTUALIZATION OF INHERITANCE 91

inheritance when the virtual inheritance can be shown to be unnecessary. Let us now

discuss when such a situation would arise.

6.1 Uses of Virtual Inheritance

Virtual inheritance is almost always used when there is a possibility that the base class

will be multiply inherited, and in particular, when classes are being de�ned as interfaces or

as \mix-ins". A mix-in is a class that is not instantiated on its own, but is typically added

to another class to extend its functionality. An example is a ScrollBar class, which can

be mixed in with a TextWindow or a GraphicsWindow class to form a scroll-able window.

In designing system software, where it is di�cult to predict how classes will be combined

by application developers, there is a strong motivation to use virtual inheritance as a

matter of course. However, virtual inheritance can cost additional object space (for the

virtual base pointers) and additional time (because accessing base class members now

requires an additional indirection).

From the standpoint of performance, virtual inheritance should only be used when

a class will actually be multiply inherited, but how application developers will choose

to inherit classes is di�cult to predict. Once again, C++ confronts developers with a

exibility versus performance tradeo�.

However, when the complete application is being compiled, the extent of sub-classing

is known. By analyzing the class hierarchy, the compiler can identify those cases for which

virtual inheritance is actually needed. All other virtual inheritance edges can be marked

as pseudo-virtual, meaning that for purposes of object layout, they can be implemented

like non-virtual inheritance edges. The set of live classes CL computed by Rapid Type

Analysis (or alias analysis, or some other algorithm) can be used to identify classes that

are never instantiated, thereby allowing a greater number of virtual inheritance edges to

be eliminated.

Unfortunately, C++ requires a semantic di�erence between the manner in which virtual

base class constructors and non-virtual base class constructors are called, so pseudo-virtual

bases must still use virtual base constructor invocation semantics (a virtual base class of

some derived class is a base class that is reached from the derived class through at least one

virtual inheritance edge in the CHG). The practical e�ect of this di�erence in constructor

semantics is that base class de-virtualization cannot be performed as a source-to-source

CHAPTER 6. DE-VIRTUALIZATION OF INHERITANCE 92

1 �ndLiveCHG(C;D; V;CL)
2 C� C
 ;
3 for each c 2 C
4 mark(c) false
5 for each c 2 C : 6 9b2C : < b; c >2 D
6 �ndLiveClasses(c)

7 �ndLiveClasses(c 2 C)
8 if mark (c)
9 return c 2 C�

10 mark (c) true

11 l false

12 for each d 2 C : < c; d >2 D
13 l l or �ndLiveClasses(d)
14 if c 2 CL or l
15 C� C� [fcg
16 if c 2 CL and not l

17 C
 C
 [fcg
18 return true

19 else

20 return l

Figure 6.1: Finding the Live Portion of the CHG

translation, and requires additional support in code generation and the back end.

6.2 The Devirtualization Algorithm

To �nd devirtualizable inheritance edges in the class hierarchy, the compiler must �rst

identify those classes that are relevant. Clearly, this must include the live classes (CL),

but it must also include any base classes of those live classes, since the compiler may be

devirtualizing inheritance edges between non-live classes that are bases of live classes.

Figure 6.1 is a simple algorithm for �nding this subgraph by using a depth-�rst traversal

of the CHG. It computes two sets: C�, the reduced class hierarchy induced by CL, and

C
 � CL, the set of leaf classes of C�. Assuming that the set of roots of D that are

iterated over on line 5 have been computed in advance, the �ndLiveCHG algorithm

takes O(D logC) worst-case time or O(D) expected time.

CHAPTER 6. DE-VIRTUALIZATION OF INHERITANCE 93

1 devirtualizeBases(C;D; V;C
)
2 for each d 2 D
3 if IsVirtual(d)
4 mustBeVirtual(d) = false

5 for each c 2 C

6 Q ;
7 initializeCounts(c)
8 Q ;
9 �ndVirtualBases(c)
10 Q ;
11 markVirtualEdges(c)

12 initializeCounts(c 2 C)
13 if c 2 Q
14 return

15 Q Q [fcg
16 virtualCount(c) 0
17 for each b 2 C : < b; c >2 D
18 initializeCounts(b)

19 �ndVirtualBases(c 2 C)
20 if c 2 Q
21 return

22 Q Q [fcg
23 for each b 2 C : < b; c >2 D
24 if IsVirtual(< b; c >)
25 virtualCount(b) virtualCount(b) + 1
26 �ndVirtualBases(b)

27 markVirtualEdges(c 2 C)
28 if c 2 Q
29 return

30 Q Q [fcg
31 for each b 2 C : < b; c >2 D
32 if virtualCount(b) > 1
33 mustBeVirtual(< b; c >) = true
34 markVirtualEdges(b)

Figure 6.2: The Base Class De-virtualization Algorithm

CHAPTER 6. DE-VIRTUALIZATION OF INHERITANCE 94

Once the live class hierarchy has been computed, the algorithm devirtualizeBases in

Figure 6.2 is relatively straightforward. Initially, all inheritance edges that were declared

virtual are assumed to be implementable as non-virtual edges (lines 2{4). Then three

passes are made up the class hierarchy from the live leaves in C
. The purpose of these

passes is to determine whether there are multiple paths with virtual edges from any live

leaf to any of its bases.

The �rst pass, initializeCounts, simply initializes the counter VirtualCount to zero

for all of the transitive base classes of the live leaf class c. The set Q is used to keep track

of the visited classes to ensure that no class is visited more than once.

The second pass, �ndVirtualBases, walks up the class hierarchy from live leaf c and

increments VirtualCount for every base class that is inherited virtually. After the second

pass, any transitive base class x of leaf class c for which there is more than one virtual

edge out of x that leads to c has a VirtualCount that is greater than 1.

The third pass, markVirtualEdges, walks up the class hierarchy and sets the Must-

BeVirtual
ag of any virtual edges whose source class has a VirtualCount greater than

1.

6.3 Complexity

Each of the three passes traverses the class hierarchy in an identical manner, so we can

simply analyze the complexity of �ndVirtualBases to �nd the complexity for all three

(the only di�erences between them are in the constant-time operations of setting
ags and

so on).

Due to the use of the set Q, no edge of D will be traversed more than once per live leaf

class, so there will be at most D recursive calls to �ndVirtualBases. The iterations in

the loop on lines 23{26 all result in recursive calls, so those iterations must not be counted

again. The set lookup and union operations for Q cost logC�, because by de�nition

Q � C�.

Therefore, the total cost of each pass is O(D logC�) and the cost for the devirtual-

izeBases algorithm is

O(C
D logC�)

since the three passes are performed once for each live leaf class in C
.

By using a hash table for Q, the expected time is reduced to O(C
D). Since multiple

CHAPTER 6. DE-VIRTUALIZATION OF INHERITANCE 95

inheritance is usually rare, in practice the cost of devirtualizeBases will usually be

proportional to the size of D.

6.4 Evaluation

The algorithm described in this chapter can devirtualize a base class when it is not

multiply inherited by any live classes. This allows class hierarchy designers to provide a

lot of
exibility by declaring inheritance as virtual, but allows users of the class hierarchies

to avoid the penalties of virtual inheritance unless it is truly necessary.

In the paradigm presented in the introduction to this dissertation, the base class de-

virtualization algorithm removes excess generality in the class hierarchy with respect to a

particular program.

We were only able to �nd one benchmark of signi�cant size that made non-trivial use

of virtual base classes. Therefore, we have not done any quantitative evaluation, since one

benchmark is insu�cient for drawing any conclusions.

After searching fairly extensively for such programs, our impression is that the \lore"

in the C++ community is that virtual base classes are too expensive. For instance, the

Taligent frameworks, which would have been very naturally designed with virtual base

classes, avoid them and were compromised in their orthogonality because the designers

feared the performance implications.

While the base class devirtualization algorithm might or might not yield signi�cant

improvements for existing programs, if it is incorporated into compilers it will allow class

hierarchy designers to be further freed from the need to trade o�
exibility against per-

formance.

Chapter 7

Other Uses of Live Class

Information

In this chapter we will discuss some other optimizations that can be performed using

the live class information that is computed by the Rapid Type Analysis algorithm, or by

any other algorithm that computes live classes.

Primarily the optimizations described in this chapter apply to the features that in C++

are called \run-time type identi�cation": the ability at run-time to inquire about the type

of an object or cast an object to a derived type (or generate an exception if there is a

type mismatch). These features are part of the new ANSI C++ standard (and therefore

not much in use in C++), but are integral to Java because Java has no templates and

encourages the use of generic container types.

The optimizations of this chapter involve a class c and an expression. We assume that

RTA or some other static analysis provides a set E corresponding to the possible types

that the expression could have at run-time. If the static type of the expression is e 2 C,

then RTA will compute the set

E = Derived�(e) \ CL:

In other words, the set of possible dynamic types is the set of all live classes at or below

e in the class hierarchy.

If an analysis algorithm that computes per-variable type information is used, such as

alias analysis, then the set E will depend on the particular expression. However, the

optimizations described in this chapter will be una�ected.

96

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 97

L

NM

K

J

Figure 7.1: A Class Hierarchy that Complicates Type Inquiries

7.1 Optimizing Type Equality Tests

The simplest run-time type operation is to ask whether an object is of a particular

type. C++ provides the typeid operator for this purpose. Assuming the class hierarchy

in Figure 7.1, if we declare

K* p = new M();

then the expression

typeid(*p)==typeid(M)

will evaluate to true.

Using the set E of possible dynamic types of p calculated by RTA or some other

analysis algorithm, if E = fMg then we can replace typeid(p) by typeid(M). The equality

comparison can then be folded into a constant true. Similarly, if there is only one element

in E but it is not M, then that type can be inserted and the expression will be folded into

the constant false.

In general, if the set E contains more than one class, then a C++ typeid expression

can not be evaluated at compile-time. However, the type expression above can still be

optimized if M 62 E.

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 98

7.2 Optimizing Type Instance Tests

While C++ provides a type equality operator, Java provides a type instance operator,

instanceof, whose semantics are more complex. Using the same class hierarchy from

Figure 7.1 and assuming that J and L are interface classes, if we have the Java declaration

K p = new M();

then the expression

p instanceof M

will evaluate to true, just as with the C++ typeid operator. However, the expression

p instanceof L

will also evaluate to true, because p refers to an object of type M, and every M is an instance

of an object of type L, its base class.

This property of the instanceof operator makes optimization considerably more in-

volved, since not only do we have to contend with multiple possible types, but some of

them may be siblings in the class hierarchy, rather than just ancestors and descendants

(bases and derived classes). Therefore, for each class in z 2 E, we must consider all of the

classes in Bases�(z), the ancestors of z, when deciding whether the type inquiry expression

can be optimized.

For the type instance inquiry p instanceof L, if E = fM; Ng then the expression can

be optimized to the constant true. If E = fKg then the expression can be optimized to

the constant false. If E = fK; Mg then the expression can not be optimized to a constant

value, but it could be optimized to a simple test.

The algorithm for optimizing a type inquiry is shown in Figure 7.2. The function

optimizeInstanceOf takes a set E of possible types for the expression and a class c, and

returns true if the types in E are always instances of c, false if the types in E are never

instances of c, or the set Z � E of types that are instances of c if the type inquiry can not

be reduced to a constant.

7.3 Optimizing Dynamic Casts in Java

Optimization of dynamic casts is dependent upon the object model being used. We

will begin with the simplest object model, namely Sun's Java object model in their JDK

version 1 (hereafter called the \Sun object model").

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 99

1 optimizeInstanceOf(E � CL; c 2 C)
2 Z fz 2 E : c 2 Bases�(z)g
3 if Z = E

4 return true
5 else if Z = ;
6 return false

7 else

8 return Z

Figure 7.2: Optimizing a Dynamic Type Inquiry

In the Sun object model, an object consists of class data and a pointer to a class

object, which includes the method table. In the general case, method dispatch involves

a dynamic lookup in the method table, just as in the dynamically-typed languages like

Smalltalk and SELF. While this sometimes extracts a performance penalty, it is simple

and never requires more than one word per object for the class information. By contrast,

C++ object models may require multiple words per object for the class information.

The Sun object model also simpli�es casting, since there are no o�sets to adjust any-

where. A cast operation is simply a check: once we are certain that the object is of the

appropriate type, no further modi�cation is necessary.

Due to this simplicity, the optimizeInstanceOf algorithm of Figure 7.2 can also be

used for casts with the Sun object model. The cast in the Java code fragment

foo(Base b) {

Derived d = (Derived) b;

...

}

can be implemented as a simple pointer copy if optimizeInstanceOf returns true, or as

throw ClassCastException(b) if optimizeInstanceOf returns false.

7.3.1 Optimizing A Common Idiom

A common idiom in Java programs is to �rst test if an object is an instance of a type,

and then downcast to that type if the test succeeds. For example,

if (p instanceof L)

L lp = (L) p;

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 100

1 optimizeDynamicCast1(e 2 C;E � CL; c 2 C)
2 Z fz 2 E : c 2 Bases�(z)g
3 if Z = ;
4 return false
5 Let t 2 Z
6 if E = Z and 8x2Z : ThisAdjustment(x; e; c) = ThisAdjustment (t; e; c)
7 return ThisAdjustment(t; e; c)
8 else

9 return Z

Figure 7.3: A Simple Dynamic Cast Optimization Algorithm for use with C++-style
Object Models.

This idiom is easily recognizable and can be implemented with a single type inquiry op-

eration, provided either that there are no intervening operations between the instanceof

and the downcast operators or that
ow analysis is used to ensure that the possible types

of p do not change between the instanceof and the downcast operators.

7.4 Optimizing Dynamic Casts in C++

When a more complex object model is being used in which a cast may involve an

adjustment to the this pointer, the casting optimization becomes slightly more complex.

This is the case for virtually all C++ object models.

Figure 7.3 is an algorithm for optimizing dynamic casts, which extends the algorithm

of Figure 7.2 that applied to the Sun object model. The static type e 2 C of the expression

is required as an additional parameter. The set of castable classes Z is computed in the

same way, and if the set Z is empty, then the value false is returned, indicating that the

cast will always fail and can be replaced with a throw clause.

If the cast will always succeed (that is, if Z = E), then if all possible casts lead to the

same o�set being added to the this pointer, then that o�set value is returned. Otherwise

the set Z is returned, indicating failure.

A more thorough algorithm is shown in Figure 7.4. This algorithm returns an empty

set if the cast must fail. Otherwise, it returns a set of pairs consisting of a set of classes

and the o�set value to add to the this pointer in order to cast each of them to type c.

For those classes that can not be cast to type c, the cast value ? is used.

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 101

1 optimizeDynamicCast2(e 2 C;E � CL; c 2 C)
2 Z fz 2 E : c 2 Bases�(z)g
3 if Z = ;
4 return ;
5 Q ;
6 if E 6= Z

7 Q f< E � Z;?>g
8 while Z 6= ;
9 Let t 2 Z
10 Z Z � ftg
11 W ftg [fx 2 Z : ThisAdjustment(x; e; c) = ThisAdjustment (t; e; c)g
12 Q Q [f< W;ThisAdjustment (t; e; c) >g
13 Z Z � U

14 end while

15 return Q

Figure 7.4: A More Sophisticated Dynamic Cast Optimization Algorithm

The sets returned by algorithm optimizeDynamicCast2 are used to determine a

sequence of conditionals that test the type of the object, presumably starting with the

smallest set in Q. It will often be the case that the sets of Q only contain a single element,

making the conditionals quite fast.

7.5 Complexity Issues

The expensive part of all of the algorithms presented so far in this chapter is the

computation of the set

fz 2 E : c 2 Bases�(z)g

from the set E of possible class types of the expression being cast or interrogated. Since

the classes of E are related, there is likely to be a lot of redundant work in calculating

Bases�(e) for the various class types, each time involving a recursive walk up the class

hierarchy.

The potential solution is to calculate Bases�(c) for each class c 2 C, and store it in

a hash table at the class node. This would make the computation of the above set take

O(E) expected time, at the cost of a considerable amount of space and pre-computation.

Even in Java, in which dynamic casts are a major part of the language idiom and occur

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 102

; the object pointer is in R1

Load R2, 0(R1) ; R2 is the pointer to the VFT

Load R3, MethodOffset(R2) ; R3 is the method pointer

Load R4, MethodOffset+4(R2) ; R4 is the this adjustment

Add R1, R1, R4 ; adjust the object pointer

Call R3 ; call the virtual function

Figure 7.5: Virtual Function Dispatch using Two-Column Virtual Function Tables

quite frequently, they are still rare compared to method invocations. Therefore, from a

practical standpoint, the best approach is to calculate the set Z in a straightforward,

albeit ine�cient, manner.

7.6 Optimizing Virtual Dispatches

In the \reference" object model of the C++ Annotated Reference Manual (ARM) [Ellis

and Stroustroup 1990], virtual function tables consist of two columns: the �rst column

contains the pointer to the function, and the second column contains an adjustment to the

this pointer. The position of a virtual function pointer in the table is an o�set determined

at compile-time.

Many C++ compilers use a variant of the ARM object model with two-column vir-

tual function tables (VFT's). Using the ARM object model, a virtual function call is

implemented as shown in Figure 7.5.

A major drawback of two-column VFT's is that the vast majority of this pointer

adjustments are redundant because multiple inheritance is relatively rare. As long as

only single inheritance is used, methods introduced by derived classes are simply assigned

o�sets in the VFT greater than those of the methods in the base classes. Therefore, the

this pointer adjustment is 0.

The algorithm in Figure 7.6 formalizes this description. Given a virtual function call

of the form (expr)->foo(), e 2 C is the static type of expr, and the set E � C is the set

of possible dynamic types of expr based on static analysis. The method m is the method

name of foo.

The set Z is all of the di�erent this pointer adjustments for method m for the classes

in E. If there is only one adjustment, optimization is successful and the adjustment a is

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 103

1 optimizeTwoColumnDispatch(e 2 C;E � CL;m 2M)
2 Z fz 2 E : ThisAdjustment(z; e;ClassOf (m))g
3 if jZj = 1
4 Let a 2 Z
5 return a

4 else

5 return ?

Figure 7.6: Calculating the set of Possible This Pointer Adjustments

; the object pointer is in R1

Load R2, 0(R1) ; R2 is the pointer to the VFT

Load R3, MethodOffset(R2) ; R3 is the method pointer

Call R3 ; call the virtual function

Figure 7.7: Virtual Function Dispatch after Optimization

returned (usually a will be 0). If multiple o�sets are possible, the value ? indicates failure

and the dispatch will not be optimized.

Figure 7.7 shows the code generated when the this pointer o�set is determined to

be zero by optimizeTwoColumnDispatch. In the rare case when there is a constant

non-zero o�set x, an add immediate instruction of the form AddI R1, R1, x is inserted

somewhere before the call.

7.6.1 Converting Java Interface Calls to Virtual Calls

The optimization we have just described for C++ has an exact analogue in Java: the

conversion of interface calls to virtual calls. In Java, virtual calls are made through an

implementation class, and since there is only single inheritance of implementation, the

virtual function can always be obtained at a �xed o�set. However, for interface calls,

multiple inheritance is possible and it may be necessary to search for the target function.

(Caching is used to eliminate most of these searches).

A variant of optimizeTwoColumnDispatch can be used to determine when an inter-

face call can be converted into a virtual call: instead of computing the set of this pointer

adjustments, compute the set of virtual function table o�sets of the target function. If

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 104

there is only one, the call can be converted into a virtual call, which is less expensive than

an indirect call. Serrano [1997] reports that most interface calls in the benchmarks he ex-

amined were due to use of the Enumeration interface, and that almost 100% of interface

calls could be converted to virtual calls using this method.

7.7 Eliminating Java Synchronization

Preliminary results from benchmarking Java applications show that they spend an

enormous amount of time performing synchronization operations. Why is this? Because

all of the Java library classes, in order to be thread-safe, implement their public methods

as synchronizedmethods. Most Java programs make signi�cant use of the library classes,

and as a result call a large number of synchronized methods.

However, many Java programs, especially those designed as stand-alone applications

(like javac, the Sun Java compiler), are single threaded. Rapid Type Analysis can be used

to determine when the synchronization operations may be safely omitted by the compiler.

In order for a program to be multi-threaded, it must instantiate Thread or one of its

derived classes. Therefore, if

Derived�(Thread) \ CL = ;

then the program does not create any threads and the synchronization operations can be

omitted.

Such optimizations, combined with a more e�cient run-time implementation of locking,

may well be able to reduce synchronization overhead in Java programs to the point where

it is not a signi�cant performance issue. We have recently shown that highly e�cient

run-time implementations of locking are possible for Java [Bacon et al. 1997].

7.8 Future Applications

We have only described some of the most obvious applications of Rapid Type Analysis

in this chapter.

Sweeney and Tip [1997] have used RTA as the basis for an algorithm that �nds and

removes unused data members in C++ programs. The dynamic space reduction can

be signi�cant. This is yet another example of how Rapid Type Analysis and related

algorithms can be used to remove excess generality from programs.

CHAPTER 7. OTHER USES OF LIVE CLASS INFORMATION 105

The combination of dead code removal achieved by RTA and the above dead data

member removal could be combined into a very powerful application extracter. The ex-

tracter would be particularly useful in generating minimal size executable code images for

embedded devices with limited memories.

In general, constructing an accurate call graph can be used to improve almost any

inter-procedural optimization. At the very least, it reduces the time required to analyze

the program.

Chapter 8

Optimizing Incomplete Programs

Most system code is supplied in libraries. Since our techniques all derive their power

from analyzing the whole program at once, how can they be applied to libraries? Libraries

actually raise two issues: the optimization of the library, given that the �nal class hierarchy

and the �nal program is unknown; and the optimization of the client program, given

that the source code for the library is unavailable. To a large degree these problems are

symmetrical because they both involve optimization in the presence of an incomplete CHG

and an incomplete PVG. However, there are some important di�erences.

To simplify matters, when a program is the client of multiple libraries, they can be

treated as a single library for the purposes of this chapter.

In order to optimize an incomplete program, we must know which classes are being

exported by the library, and which classes are purely internal. Java makes this information

explicit: a class declared public can be instantiated outside of the package in which it is

declared; a class declared as public and not declared as final can be subclassed outside

of the package in which it is declared.

The set of classes that can be instantiated by the clients of the library are called the

exported classes, denoted C	, where C	 � C. For Java, C	 contains the public classes.

For C++, C	 can be speci�ed by pragmas in the program or in an auxiliary �le, or C	

can be inferred by inspecting the header �les that will be delivered with the library: any

class de�ned in the header �les is placed in C	.

The classes that can be subclassed by the clients of the library are called the derivable

classes, denoted C�, where C� � C	 � C. For Java, C� contains the public, non-final

classes. For C++, C� can be speci�ed by pragmas, or it can conservatively be assumed

106

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 107

1 rapidTypeAnalysis(F; S; I;R)
2 QV ;
3 CL C	

4 FL SL IL ;
5 R R [M� [M	 [F	
6 for each f 2 R
7 analyze(f , false)

Figure 8.1: Rapid Type Analysis algorithm modi�ed for use with libraries.

to be identical to C	.

In addition to information about exported classes, we must also know which methods

and functions are being exported. We de�ne M	 to be the set of public methods of the

classes in C	, M� to be the set of protected methods of classes in C�, and F	 to be the

set of non-methods exported by the library.

8.1 Compiling a Library

The general approach to the incomplete code problem that we take here is to �rst

build the CHG and PVG for the incomplete program, and run the Rapid Type Analysis

algorithm on the incomplete PVG. We then present modi�ed versions of the optimizations

that take the missing code into account.

8.1.1 Analyzing a Library

When analyzing a library, the unknown client program raises three issues that we must

take into account. First, any classes in C	 may be instantiated by the client program.

Second, any accessible methods or functions in the library may be called by the client

program. Third, any classes in C� may be subclassed by the client program.

We use the CHG and PVG construction algorithms unchanged. The missing portions

will be dealt with in the subsequent analysis and optimization.

The RTA algorithm will account for the �rst issue, instantiation of library classes by

the client, by initializing the set of live classes CL to C	 instead of to the empty set as

shown in Figure 8.1 (the original algorithm is shown in Figure 4.3 on page 47).

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 108

The second issue, calls from the client program into the library, can also be addressed

in the RTA algorithm by expanding the set of roots of the call graph R to include M	

(the set of public methods of the exported classes in C), M� (the set of protected

methods of the derivable classes in C�), and F	 (the set of exported non-methods in F).

With these two simple modi�cations, we have handled all the potential e�ects of the

unavailable code except for subclassing of classes in C�. Subclassing will be addressed by

modifying the optimization algorithms.

8.1.2 Analyzing a Library with Function Pointers

In languages like C++ that include function pointers, some changes to the extended

RTA algorithm of Figures 4.4 and 4.5 are necessary in addition to the changes we have

already described.

The modi�cations to the extended RTA algorithm are shown in Figure 8.2. To begin

with, we must assume that any exported functions may have their addresses taken in the

unavailable code (lines 5 and 6).

In addition, we must be more conservative in our treatment of function pointers, be-

cause once a function's address is taken, it could be passed into the user code and called

from there. Therefore, we assume that any function whose address is taken in live code is

itself live (line 13).

With pointer-to-member calls we do not need to be quite so conservative, because

the class hierarchy gives us some additional leverage. In particular, a member function

pointer can only be used with its de�ning class and its transitive subclasses. If none of

these classes is exported, then it is not possible to invoke the member pointer from the

unavailable code (lines 20 and 21).

8.1.3 Virtual Function Resolution

So far we have described how to analyze an incomplete program, and have taken into

account all e�ects of the unavailable code except for derivation from classes in C�. The

modi�ed indirect function call resolution algorithm is shown in Figure 8.3 (for comparison,

the original algorithm is in Figure 5.1(a) on page 59).

To begin with, the new algorithm makes no attempt to resolve the function pointer

calls in SP because another function of the correct type could be in the unavailable code

and have its address passed into the library code (line 3).

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 109

1 extendedRTA(F; S; I;R)
2 QV QP QM ;
3 CL C	

4 FL SL IL ;
5 FA F	
6 MA M� [M	

7 R R [M� [M	 [F	
8 for each f 2 R
9 analyze(f , false)

10 addFunctionPointers(f 2 F)
11 for each g 2 FunctionPointers(f) : g 62 FA
12 FA FA [fgg
13 analyze(g; false)
14 for each i 2 I : < g; i >2 QP

15 QP QP � f< g; i >g
16 addCall(i)

17 addMemberPointers(f 2 F)
18 for each m 2 MemberPointers(f) : m 62MA

19 MA MA [fmg
20 if Derived�(ClassOf (m)) \ C	 6= ;
21 analyze(m; false)
22 for each i 2 I : < m; i >2 QM

23 QM QM � f< m; i >g
24 Let < s; g; h; P >= i

25 if P =? or P \ CL 6= ;
26 addCall(i)
27 else

28 addVirtualMappings(P; i)

Figure 8.2: Modi�cations to the extended RTA algorithm of Figures 4.4 and 4.5 to handle
function pointers in the presence of libraries.

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 110

1 resolveCalls(F; SL; IL; C�)
2 SR ;
3 for each s 2 SL : s 2 SV or s 2 SM
4 Q f< s; f; g; P >2 I j f 2 F; g 2 F; P 2 2Cg
5 if 8<s;f;g;P>2Q : (P =? or P \ C� = ;)
6 R fi 2 Q : i 2 ILg
7 if jRj = 1
8 SR = SR [fsg

Figure 8.3: Indirect Function Call Resolution for Libraries

For each virtual or pointer-to-member call site s, the set Q of call instances is computed

(line 4). We then check to make sure that all of the call instances in Q are either non-

virtual member-pointer calls (P =?), or if they are virtual calls that none of the possible

classes is derivable (P \ C� = ;). If this check fails, then we do not attempt to resolve

the call.

How does this work? The only way for the client code to \invalidate" a virtual call

resolution is by subclassing one of the possible classes at the call site, overriding the

method in question, and then passing an object of the derived type into the client code. If

none of the possible classes (in the sets P) can be subclassed, then it will not be possible

for the client code to invalidate the virtual call resolution).

If the check on line 5 succeeds, then if there is only one live call instance in Q, the call

is resolved (lines 6{8).

8.1.4 De-virtualizing Inheritance

Figure 8.4 shows the modi�cations to the algorithm for de-virtualizing inheritance.

Lines 1{11 are unchanged. Lines 12{15 take into account subclassing of classes in C� by

the unavailable code.

There are two situations in which a virtual inheritance edge in the library can not be

de-virtualized, even if the library does not multiply inherit the base class. The �rst, shown

in Figure 8.5, occurs when both the base class J and the derived class K of the virtual

inheritance edge are in C�. In this case, the unavailable code may also virtually derive

class L from K, and then derive class M from both the library class K and its own class L.

Since there are two virtual paths from M to J, the virtual edges can not be de-virtualized.

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 111

1 devirtualizeBases(C;D; V;C
; C�)
2 for each d 2 D
3 if IsVirtual(d)
4 mustBeVirtual(d) = false

5 for each c 2 C

6 Q ;
7 initializeCounts(c)
8 Q ;
9 �ndVirtualBases(c)
10 Q ;
11 markVirtualEdges(c)
12 for each c 2 C
13 for each d 2 C� : < c; d >2 D and IsVirtual(< c; d >)
14 if c 2 C� or (9e2C� : < c; e >2 D and IsVirtual(< c; e >))
15 mustBeVirtual(< c; d >) true

Figure 8.4: Modi�cations to the algorithm for de-virtualizing inheritance.

L

M

K

J

LIBRARY

CLIENT

Figure 8.5: Inability to De-virtualize Inheritance in a Library: Case 1. Shaded classes
J and K are subclassable library classes (they are in C�). Dashed inheritance arcs are
virtual. Inheritance arc J-K must be virtual because the client program could introduce
classes L and M.

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 112

L

M

K

J

LIBRARY

CLIENT

Figure 8.6: Inability to De-virtualize Inheritance in a Library: Case 2. Shaded classes
K and L are subclassable library classes (they are in C�). Dashed inheritance arcs are
virtual. Inheritance arcs J-K and K-L must be virtual because the client program could
introduce class M.

This case is taken into account in the �rst part of the conditional clause on line 14

of the new de-virtualizaion algorithm: if the class c is in C� as well as d, then the edge

< c; d > must be virtual.

The second case is shown in Figure 8.6: the inheritance hierarchy is the same, but this

time J, K, and L are library classes but only K and L are in C�. The client code could

derive class M from K and L, in which case neither of the edges could be de-virtualized.

This case is taken into account in the second part of the conditional on line 14 of the new

de-virtualization algorithm: if < c; d > is virtual and d 2 C�, then < c; d > must be

virtual if there is another virtual edge < c; e > such that e 2 C�.

8.1.5 Type Inquiries and Type Casts

All of the optimizations of Chapter 7 involve an expression whose static type is e 2 C,

for which a set of possible types E is provided by RTA or some other analysis. In the case

of RTA, the set of possible types is

E = Derived�(e) \ CL:

All of these optimizations rely in some way on the set of possible types being determined

at compile-time. If this set can not be determined statically, then the optimizations can

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 113

not be performed.

By placing all of the library classes that might be instantiated by the client program

C	 into the set of live classes CL, we have accounted for expansion of the set E by known

classes. However, we must also account for expansion of the set E by unknown classes |

classes that will be de�ned in the client code.

Accounting for unknown classes is actually quite simple. An unknown class would

cause the set Derived�(e) to grow, by being derived from one of the classes in Derived�(e).

But we know exactly which classes can be subclassed by the client program: the classes

in C�. Therefore, any of the type inquiry or type casting optimizations of Chapter 7 can

be adapted for libraries simply by checking if

Derived�(e) \ C� 6= ;

in which case the optimization can not be applied. Otherwise, there is no possibility that

the set E will be expanded by the client program, and the optimization is safe.

8.2 Optimizing Library Clients

We now turn to the problem of optimizing a client program in the absence of source

code for one or more libraries it is using. This assumes some sort of separate compilation

model, which at this point Java does not have: to compile a program all the bytecodes

that it makes use of must be available. From our perspective, bytecodes are \source-

level" information because they contain all of the information necessary to type-check the

program.

Because of the absence of a separate compilation model for Java, our description in this

section will be for C++. However, it is straightforwardly adaptable to Modula-3, Dylan,

or a foreseeable separate compilation scheme adopted for Java.

In order to type-check a program that uses (or subclasses) a library class, the public (or

public and protected) member declarations of the library class and all of its base classes

must be available. For C++, this means that the class declarations of all classes in C	

must be available in the library header �les (that is, all source code associated with the

classes in C	 except for the method bodies). Therefore, we know that the complete class

hierarchy with respect to the classes de�ned in or used by the client code is available.

As with libraries, we will use the unmodi�ed CHG and PVG construction algorithms

to construct the partial CHG and partial PVG of relevance. In this case, the PVG may

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 114

contain call instances that refer to methods for which we have no source information; we

will simply treat them as leaf procedures.

Optimizing a library client in the absence of the library is remarkably similar to opti-

mizing a library in the absence of the client, because in both cases we must account for

the e�ect of the unavailable code on the library classes. In the case of a client program,

we know about all (or almost all, as will be explained below) of the operations upon the

classes introduced by the client | since they are introduced by the client, they can not

be referred to by the library.

What we do not know is what library classes are instantiated in the library, and what

library classes are subclassed in the library. Therefore, the de�nition of C	 is unchanged:

it is the set of classes exported by the library. However, the corresponding set M	 of

methods that could be invoked or have their addresses taken in unavailable code is the set

of all methods of the classes in C	.

In the absence of any pragmas, we must assume that C�, the set of classes that may

be subclassed in unavailable code, is the same as the set C	. In languages that support

final classes in the style of Java (such as Dylan [Feinberg et al. 1997]), C� is the set of

non-final classes in C	.

The set F	 of exported functions is the set of all function (non-method) interfaces

available to the library client.

8.2.1 Changes to the RTA Algorithm

The RTA algorithm of Figure 8.2 can be used, although some additional modi�cations

are required. In particular, we will not be adding elements to the set R of roots of the

PVG, because the roots have been supplied as part of the input.

In addition to the altered handling of function and member-function pointers, there

is another issue that must be addressed. If the client code subclasses a library class and

overrides one of its functions, there may be a virtual dispatch in the library code that

could invoke the overriding function in the client code. Therefore, as soon as a class from

the client code is instantiated, all of its methods that override methods in the library code

must be assumed to be live.

The corresponding modi�cations to the RTA algorithm are shown in Figure 8.7. If a

non-library class is instantiated (line 9), then for any non-virtual methods that are not

already part of the call graph (line 10), we check whether they might be called from within

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 115

1 instantiate(c 2 C)
2 if c 2 CL
3 return

4 CL CL [fcg
5 for each i 2 I : < c; i >2 QV

6 if i 62 IL
7 addCall(i,false)
8 QV QV � f< c; i >g
9 if c 62 C	 and Bases�(c) \ C� 6= ;
10 for each m 2M;d 2 C : < c;m; d >2 V and IsVirtual(m) and m 62 FL
11 Q ;
12 if overridesLibraryMethod(< c;m; d >)
13 analyze(m; false)

14 overridesLibraryMethod(v 2 V)
15 Let < c;m; d >= v

16 if d 2 C	

17 return true

18 if c 2 Q
19 return false

20 Q Q [fcg
21 for each b 2 C : < b; c >2 D
22 if 9n2M;e2C : < b; n; e >2 V and Sig(m) = Sig(n)
23 if overridesLibraryMethod(< b; n; e >)
24 return true

25 return false

Figure 8.7: When a non-library class is instantiated, if any of its methods override methods
of library classes, they must be assumed to be live.

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 116

the library code (lines 11{13). The set Q keeps track of which classes have been visited by

the recursive overridesLibraryMethod function, to ensure that no class and its bases

is processed more than once.

The overridesLibraryMethod function walks up the class hierarchy from the class

c, looking for a visible method de�ned by one of the library classes in C	. As we have

mentioned previously, backpointers are kept from visible methods to the corresponding

visible methods in the base classes, so the iteration on lines 21 and 22, while appearing

complex, is implemented as an iteration over a list.

These modi�cations to the RTA algorithm do impact its complexity. A single invocation

of overridesLibraryMethod could take O(D logC) time (the function is a \depth-�rst"

traversal up the class hierarchy graph). Each class in C �C	 can be instantiated at most

once, and has at most M virtual methods. Therefore, the contribution of the library

modi�cations is

O((C � C)MD logC)

and the total worst-case complexity of RTA is degraded to

O(R+ IP logC + (C � C)MD logC):

However, since class hierarchies are almost always quite shallow, the cost of over-

ridesLibraryMethod will normally be bounded by a small constant, and the D logC

term can be dropped. The expected complexity is therefore

O(IP + (C � C)M)

and by noting that only live classes are instantiated and therefore the term for the number

of classes checked can be sharpened to CL � C	, which is necessarily smaller than I, we

can use the slightly worse but more intuitive bound

O(I(P +M)):

8.3 Traditional Separate Compilation

In a traditional �le-at-a-time compilation environment, can the optimizations presented

in this dissertation be applied? There are two possibilities.

First, each �le can be compiled as though it were a stand-alone library, using the

algorithms of Section 8.1. The set of \exported" classes C	 is the set of all classes not

CHAPTER 8. OPTIMIZING INCOMPLETE PROGRAMS 117

de�ned locally in the �le being compiled. The set of classes C� must be the same as the

set of classes C	.

Unfortunately, unless a lot of classes are �le-local (which in our experience is unusual),

this approach is not likely to be very e�ective.

A much better approach is to gather the necessary information at compile-time and

place it in the object �les, and then optimize the program at link-time when the entire

program is available.

This approach allows the full power of the RTA algorithm to be applied, but restricts the

power of the optimizations. In particular, while it is possible to resolve virtual and indirect

calls, it is no longer possible to inline them. And while optimization of type inquiries and

type casts is possible, de-virtualization of inheritance (which relies on changing the global

class structure of the program) is not.

Chapter 9

Conclusion

We have shown how a fast, simple algorithm | Rapid Type Analysis | can be used to

drive a suite of optimizations of the most expensive features of object-oriented program-

ming languages. These optimizations allow the programmer to design a system extensibly,

by using virtual functions and virtual base classes, without having to pay for that
exi-

bility unless it is really needed. We hope and believe that Rapid Type Analysis can help

raise the level at which programmers use languages like C++ and Java.

Rapid Type Analysis su�ers from only one limitation: it requires access to the whole

program (or library) in order to optimize it e�ectively. While this is at odds with tra-

ditional separate compilation, current trends are towards integrated development envi-

ronments in which the compiler has a more global view of the program. In addition,

the emergence of Java bytecodes [Lindholm and Yellin 1997] as a high-level architecture-

neutral distribution format means that more and more programs will be available to the

compiler in their entirety.

Rapid Type Analysis has many advantages:

� It is very fast: the median compile-time overhead for analysis that we measured for

real C++ programs was 1.4%, with a maximum of 5.6%. This makes RTA practical

for everyday use.

� It is e�ective: in �ve out of seven large C++ benchmarks, it resolved all or almost

all of the monomorphic virtual calls.

� It reduces code size: by an average of 25% in the benchmarks we measured.

118

CHAPTER 9. CONCLUSION 119

� It can speed up compilation: by removing the need to perform the back-end phases

of compilation on the eliminated functions. Grove et al [1997] have implemented

RTA in the Vortex compiler and found that RTA sped up compilation of 6 out of 12

Cecil and Java benchmarks.

� It is scalable: the expected complexity is proportional to I, the set of call instance

edges. This has been con�rmed experimentally, both in our measurements and in

those of Grove et al.

While there is still debate on how much additional precision can be achieved in practice

by algorithms that compute per-variable type information, there is no question that RTA

is the best algorithm that is practical for everyday use.

RTA is currently being incorporated into two products by IBM: a C++ compiler and

a Java compiler. RTA has also been implemented by Craig Chambers' group at the

University of Washington. RTA has become the new standard benchmark of performance

in both time and precision for type analysis algorithms.

9.1 Problems with C++

In the process of doing our dissertation research, we spent several years studying the

C++ language, developing compiler optimizations for C++, implementing them in a C++

compiler, and working with C++ benchmark programs. I regret to say that the experience

has not been a pleasant one, and we would caution any researchers about to embark on a

compiler project involving C++ to reconsider.

C++ is such a complex language that just building a front-end for the language, typ-

ically the easiest part of a compiler project, is an enormous undertaking. Our work was

repeatedly delayed because the compiler that we were depending upon had not yet imple-

mented parsing or checking of some obscure language feature.

Furthermore, these complexities are not inherent in object-oriented languages. Our

more recent research with Java has been notably simpler and less painful. While C++ has

served the valuable function of bringing object-oriented programming into the mainstream,

it lacks the orthogonality and simplicity of a language that can stand the test of time.

The complexities of C++ �lter down through all levels of the compiler and run-time

system, adding signi�cant amounts of complexity at every layer. The end result is that

CHAPTER 9. CONCLUSION 120

working with C++ is considerably harder than working with other languages. In this

dissertation, the evidence of the complexity can be seen in the numerous sections adapting

the algorithms to the additional features of C++: two types of method calls, two types of

inheritance, pointer-to-member functions, construction virtual function tables, and so on.

Let the researcher beware.

9.2 Future Work

9.2.1 Fast Type Analysis

Are there e�ective algorithms in the space between RTA and the fastest algorithms

that compute per-variable information, like Steensgard's [1996a]? We think so.

In languages like Java, the absence of support for parametric polymorphism in the lan-

guage forces the use of a programming idiom in which objects of type Object are returned

from a container or iterator class. Algorithms that compute per-variable information are

likely have more of an advantage in precision over RTA in such languages than in C++.

However, we expect that extending RTA with some simple heuristics will go a long way

to narrowing that gap.

In particular, Serrano [1997] has implemented RTA in a Java compiler. He observed

that a large proportion of unresolved calls were to the next() method of the Enumeration

class. He is extending RTA by making use of return type information in a simple local

(per-method) analysis which will be able to resolve these calls and others like them.

Another area that we believe could be fruitful is simple cloning for private objects.

It should be possible to determine quickly whether a private object can ever be accessed

from outside its containing object. If it can not be accessed non-locally, and if the set of

types within the object can be constrained, then the private object could be customized

to the local types.

For example, if an object contains a private object of class Stack, and if the stack is

not accessible outside of the object, then we may be able to quickly determine that the

stack only contains objects of type Foo, and create a customized FooStack.

9.2.2 Fast Run-time Implementation

The other side of the coin, which we have not had the scope to address in this disserta-

tion, is what to do when the expensive operations can not be eliminated at compile-time.

CHAPTER 9. CONCLUSION 121

This is just as important in helping to make the high-level features of a language usable

in practice.

While a great deal of e�ort has been expended on fast method dispatch techniques,

much less has been done to reduce the cost in time and space of multiple (virtual) inheri-

tance, or to reduce the cost of dynamic casting, which is very important in Java.

Most glaring right now is the overhead of synchronizedmethods in Java, where single-

threaded programs may spend 50% of their time in synchronization overhead.

The key to all of these run-time optimizations is always the same: make the common

case fast. To this end, we need measurements of the behavior of multiple inheritance,

dynamic casting, and synchronization in real object-oriented programs.

Appendix A

Notation

This appendix describes notational conventions and de�nes all of the variables (except
temporaries), predicates, and functions used in this dissertation.

The following conventions are used with regard to variable names:

� Caligraphic letters (B,M) represent numeric quantities used in complexity calcula-
tions;

� Lower-case letters (c, m) represent scalars or tuples;

� Upper-case letters (C, F) represent sets;

� Subscripted upper-case letters denote subsets (CL is a subset of C);

� Q, W , and Z denote temporary sets.

Iteration over sets of values is denoted by the for each operator to avoid confusion
with the quanti�er 8.

The set of all possible subsets of a set X (the power set of X) is denoted 2X .
Set constructors have a three-part general form consisting of the elements, the free

variables, and the conditions. For example,

f< s; f; g; P >2 I j f 2 F; g 2 F; P 2 2C : P \CL 6= ;g:

However, when it is unambiguous the free variable can be combined with the element
expression as in

fb 2 C :< b; c >2 Dg

and when there is no condition other than set membership, the condition clause may be
omitted as in

fTypeOf (f) j f 2 Fg:

122

APPENDIX A. NOTATION 123

A.1 Symbol Glossary

B = maxc2C jBases(c)j is the maximum number of base classes of any class (in other
words, the maximum in-degree of the class hierarchy).

Bases(c) = fb 2 C :< b; c >2 Dg, where c 2 C, is the set of base classes of c.

Bases�(c), where c 2 C, is the set of all transitive base classes of c, including c itself.

C is the set of class nodes (page 17).

CL � C is the set of \live" classes, as determined by static analysis. Since CL is necessarily
conservative, this means that if c 2 C � CL, then objects of type c are guaranteed
not to be created during any execution of the program.

C� � C is the set of classes in the library that can be subclassed.

C	 � C is the set of classes in the library that can be instantiated.

C� � C is the set of classes in the reduced CHG determined by CL. This includes all
classes in CL and their (transitive) base classes.

C
 � CL is the set of leaf classes of C�.

CHG =< C;D; V > is the class hierarchy graph.

ClassOf (m), where m 2M , is the class c 2 C in which the method m is de�ned.

D is the set of derivation edges < c; d > where c; d 2 D (page 17). Derivation edges point
from the base class to the derived class (c is the base class, d is the derived class).

Derived(c) = fd 2 C : < c; d >2 Dg, where c 2 C, is the set of all classes derived from c.

Derived�(c), where c 2 C, is the set of all classes derived from c, including c itself
(page 19).

F is the set of all functions de�ned by the program, both methods and non-methods.
F does not include interfaces, only functions and methods that have code bodies.
Therefore, MD � F . (Page 34)

FA � F is the set of functions whose addresses have been taken in the code bodies of the
functions in FL.

FL � F is the set of \live" functions.

F	 � F is the set of exported functions in the library.

FunctionPointers(f) � F , where f 2 F , is the set of functions whose addresses are taken
in the code body of f .

I is the set of call instances of the program (page 34). There is one call instance for each
possible target at each call site.

APPENDIX A. NOTATION 124

IL � I is the set of \live" call instances.

Inherit(v), where v =< c;m; d >2 V , is the set of classes in Derived�(c) that inherit
method m (page 25).

IsConstructor (f), where f 2 F , is a boolean predicate that determines whether f is a
constructor method or not.

IsBaseConstructorCall (s), where s 2 S, is a boolean predicate that determines whether s
is a call site that invokes a base class constructor as part of the process of constructing
a derived object, or some other call.

IsVirtual(d), where d 2 D, si a boolean predicate that is true if the inheritance edge d is
a virtual inheritance edge (in the C++ sense).

M = maxc2C jVcj is the maximum number of visible methods at any class in C.

M =MD [MI is the set of all methods, both interfaces and concrete methods (page 19).

MA �MD is the set of methods whose addresses have been taken as member pointers in
the code bodies of the functions in FL.

MD �M is the set of methods (with code bodies) de�ned by the program (page 19).

MI �M is the set of method interfaces introduced in a program (page 19).

M� �M is the set of protected methods of the classes in C�.

M	 �M is the set of public methods of the classes in C	.

MemberPointers(f) �MD, where f 2 F , is the set of methods whose addresses have been
taken as member pointers in the code body of f .

Override(v), where v =< c;m; d >2 V , is the set of visible methods of Derived�(c) that
directly override m (page 25).

P = max<s;f;t;P>2I jP j is the maximum number of possible classes associated with a vir-
tual call target (page 50). Since the sets P are taken from the Inherit sets, P is
bounded above by maxv2V jInherit(v)j.

Private(m), where m 2M , is a boolean predicate that is true if the method m has been
declared to be private, meaning that it is not inherited by its subclasses.

PVG =< F;S; I;R > is the program virtual-call graph.

R � F is the set of root functions of the call graph, generally the main() function and
the constructors for any global scope objects.

S is the set of call sites in the program (page 34).

SD � S is the set of direct call sites in the program.

APPENDIX A. NOTATION 125

SM � S is the set of pointer-to-member call sites in the program.

SP � S is the set of function pointer call sites in the program.

SV � S is the set of virtual call sites in the program.

SL � S is the set of \live" call sites.

SR � S is the set of call sites that have been resolved to only have one target.

� is the set of tuples representing the source-level call site information.

�D � � is the set of tuples < s; f; t >, where s 2 S, f 2 F , t 2 F that represent direct
call sites in the source program.

�M � � is the set of tuples < s; f; c; b; t >, where s 2 S, f 2 F , c 2 C, b 2 C, t 2 T , that
represent pointer-to-member function call sites in the source program.

�P � � is the set of tuples < s; f; t >, where s 2 S, f 2 F , t 2 T that represent function
pointer call sites in the source program.

�V � � is the set of tuples < s; f; v >, where s 2 S, f 2 F , v 2 V that represent virtual
call sites in the source program.

Sig(m), where m 2M , is the signature of method m. The signature of a method consists
of its name and its type. The type of a method consists of its return type and its
parameter types (see TypeOf , below).

T = fTypeOf (f) j f 2 Fg is the set of function types.

ThisAdjustment(c; f; t), where c; f; t 2 C, is the adjustment required to cast the this

pointer of an object whose actual class is c from class f to class t.

ThisEscapes(m), where m 2MD, is a boolean predicate that determines whether method
m could allow its this pointer to be used for a virtual function call.

TopNum(c), where c 2 C [f?g, is the topological number of class c. This number has
the property that if d 2 closure(c) and d 6= c, then TopNum(c) < TopNum(d). If
c =?, TopNum(c) = 0 (page 21).

TypeOf (f), where f 2 F , is the type of a function or method.

V is the set of visible methods (page 17).

Vc, where c 2 C, is the subset of visible methods V of class c. Formally, Vc = f<
c;m; d >2 V jm 2M;d 2 Dg.

Appendix B

Measurement Data

We have attempted to present information graphically whenever possible to allow the
reader to obtain a more intuitive understanding of the results. However, some readers,
in particular those attempting to reproduce our results, will �nd the actual numeric data
much more useful. It is therefore presented in its entirety in this appendix, with cross-
references to the appropriate �gures.

Note that the data is presented slightly di�erently and sometimes with more detail here
than in the graphs, which were sometimes slightly simpli�ed to aid interpretation. In the
graphs, each bar shows total quantities. In the data below, the di�erential contributions
of each type of analysis are shown rather than the totals (remember that CHA is strictly
more precise than UN, and RTA is strictly more precise than CHA). Therefore, the sum
of each line of the tables represents the total quantity (virtual function calls, code size,
etc).

Also, for static measurements the tables show two di�erent portions of the \region
of opportunity" for improvement by static analysis. For instance, Table B.3 shows both
call sites that were monomorphic during the execution trace, and call sites that were not
executed at all. In the graph, these two categories are combined into the \maximum
possible" number of resolvable call sites.

126

APPENDIX B. MEASUREMENT DATA 127

Direct Indirect Direct Virtual Ptr. to
Program Function Function Method Method Member

sched 80 1 73 30 0

ixx 135 1 458 171 1

lcom 339 0 940 374 0

hotwire 129 0 420 1 0

simulate 24 2 99 16 0

idl 179 12 259 432 0

taldict 17 0 15 15 0

deltablue 102 7 88 4 0

richards 25 0 40 3 0

Table B.1: Static Distribution of Function Call Types (see Figure 5.3).

Direct Indirect Direct Virtual Ptr. to
Program Function Function Method Method Member

sched 110867 1 1223340 967795 0

ixx 94523 106 106731 45991 1041

lcom 1300743 0 1809999 1099317 0

hotwire 86254 1 69402 33504 0

simulate 9757 2 36932 10848 0

idl 7606 12 11997 14211 0

taldict 4876 0 4335589 35060980 0

deltablue 31443 220096 101389 205100 0

richards 272 0 1749610 657900 0

Table B.2: Dynamic Distribution of Function Call Types (see Figure 5.4).

APPENDIX B. MEASUREMENT DATA 128

Program Resolved by Unresolved
UN CHA RTA Monomorphic Unexecuted Polymorphic

sched 0 10 0 23 0 0

ixx 66 230 5 16 67 15

lcom 14 111 0 42 148 131

hotwire 0 0 6 0 0 0

simulate 4 4 0 0 0 0

idl 866 184 91 22 34 1

taldict 8 4 2 0 0 0

deltablue 0 1 1 0 0 2

richards 0 0 0 0 0 1

Table B.3: Static Resolution of Virtual Call Sites (see Figure 5.6).

Program Resolved by Unresolved
UN CHA RTA Monomorphic Polymorphic

sched 0 91945 0 875844 0

ixx 3408 26785 8220 835 6743

lcom 63464 23841 0 488846 520050

hotwire 0 0 33598 0 0

simulate 0 10844 0 0 4

idl 4984 8576 156 457 36

taldict 16319300 12495100 6246600 0 0

deltablue 0 3 3 0 205097

richards 0 0 0 0 657900

Table B.4: Dynamic Resolution of Virtual Call Sites (see Figure 5.7).

APPENDIX B. MEASUREMENT DATA 129

Program Eliminated by Not Eliminated
CHA RTA Unexecuted Live

sched 1644 0 6684 91560

ixx 33540 1216 73692 70188

lcom 13920 392 25172 124548

hotwire 14924 544 3652 26296

simulate 11016 0 2712 15172

idl 26868 16436 93016 107428

taldict 12876 44 0 7596

deltablue

richards 0 72 304 9368

Table B.5: A�ect of Analysis on Code Size (see Figure 5.8).

Program Eliminated by Not Eliminated
CHA RTA Unexecuted Live

sched 45 0 49 143

ixx 359 14 395 340

lcom 157 6 120 496

hotwire 156 21 15 38

simulate 147 0 21 74

idl 154 121 328 253

taldict 377 3 0 49

deltablue 23 2 0 78

richards 4 1 2 71

Table B.6: Elimination of Dead Functions by Static Analysis (see Figure 5.9).

APPENDIX B. MEASUREMENT DATA 130

Program Eliminated by Not Eliminated
CHA RTA Unexecuted Live

sched 2 0 33 23

ixx 150 55 1402 143

lcom 103 139 2914 505

hotwire 9 68 4 2

simulate 13 0 9 19

idl 986 655 1428 417

taldict 96 6 5 9

deltablue 4 2 0 5

richards 0 1 0 4

Table B.7: Elimination of Virtual Call Arcs by Static Analysis (see Figure 5.10).

Benchmark RTA Dead Not Dead/Not Used Dynamically Live

sched 7 2 37

ixx 25 32 43

lcom 7 30 40

hotwire

simulate 19 5 18

idl 7 57 22

taldict 45 0 10

deltablue 3 0 7

richards 0 2 10

Table B.8: Live Classes: RTA algorithm vs. dynamic trace (see Figure 5.5).

Bibliography

Agesen, O. 1994. Constraint-based type inference and parametric polymorphism. In Le Char-
lier, B., Ed., Proceedings of the First International Static Analysis Symposium, (Namur, Bel-
gium, Sept.). Springer-Verlag, pp. 78{100.

Agesen, O. 1995. The Cartesian product algorithm: simple and precise type inference of para-
metric polymorphism. In Olthoff, W., Ed., Proceedings of the Ninth European Conference on
Object-Oriented Programming { ECOOP'95, volume 952 of Lecture Notes in Computer Science,
(Aarhus, Denmark, Aug.). Springer-Verlag, Berlin, Germany, pp. 2{26.

Agesen, O. and H�olzle, U. 1995. Type feedback vs. concrete type inference: A comparison
of optimization techniques for object-oriented languages. In Proceedings of the 1995 ACM Con-
ference on Object Oriented Programming Systems, Languages, and Applications, (Austin, Tex.,
Oct.). SIGPLAN Not., 30, 10, 91{107.

Agesen, O., Palsberg, J., and Schwartzbach, M. I. 1995. Type inference of SELF: analysis
of objects with dynamic and multiple inheritance. Softw. Pract. Exper., 25, 9 (Sept.), 975{995.

Agesen, O. and Ungar, D. 1994. Sifting out the gold. Delivering compact applications
from an exploratory object-oriented programming environment. In Proceedings of the 1994 ACM
Conference on Object Oriented Programming Systems, Languages, and Applications, (Portland,
OR, Oct.). SIGPLAN Not., 29, 10, 355{370.

Aigner, G. and H�olzle, U. 1996. Eliminating virtual function calls in C++ programs. In
Proceedings of the Tenth European Conference on Object-Oriented Programming { ECOOP'96,
volume 1098 of Lecture Notes in Computer Science, (Linz, Austria, July). Springer-Verlag, Berlin,
Germany, pp. 142{166.

Amiel, E., Gruber, O., and Simon, E. 1994. Optimizing multi-method dispatch using
compressed dispatch tables. In Proceedings of the 1994 ACM Conference on Object Oriented
Programming Systems, Languages, and Applications, (Portland, OR, Oct.). SIGPLAN Not., 29,
10, 244{258.

Andre, P. and Royer, J.-C. 1992. Optimizing method search with lookup caches and incre-
mental coloring. In Proceedings of the 1992 ACM Conference on Object Oriented Programming
Systems, Languages, and Applications, (Vancouver, B.C., Oct.). SIGPLAN Not., 27, 10, 110{126.

Angus, I. G. 1993. Applications demand class-speci�c optimizations: C++ compiler can do
more. Scienti�c Programming, 2, 123{131.

Apple Computer, Inc. 1988. Object Pascal User's Manual. Cupertino, Calif.

Atkinson, R. G. 1986. Hurricane: an optimizing compiler for Smalltalk. In Proceedings of the
Conference on Object Oriented Programming Systems, Languages, and Applications, (Portland,
Ore., Sept.). SIGPLAN Not., 21, 11 (Nov.), 151{158.

131

BIBLIOGRAPHY 132

Bacon, D. F., Graham, S. L., and Sharp, O. J. 1994. Compiler transformations for high-
performance computing. ACM Comput. Surv., 26, 4 (Dec.), 345{420.

Bacon, D. F., Konuru, R., Murthy, C., and Serrano, M. 1997. Thin locks: Featherweight
synchronization for java. Submitted for publication, Oct. 1997.

Bacon, D. F. and Sweeney, P. F. 1996. Fast static analysis of C++ virtual function calls. In
Proceedings of the 1996 ACM Conference on Object Oriented Programming Systems, Languages,
and Applications, (San Jose, Calif., Oct.). SIGPLAN Not., 31, 10, 324{341.

Ballard, M. B., Maier, D., and Wirfs-Brock, A. 1986. QUICKTALK: a Smalltalk-
80 dialect for de�ning primitive methods. In Proceedings of the Conference on Object Oriented
Programming Systems, Languages, and Applications, (Portland, Ore., Sept.). SIGPLAN Not.,
21, 11 (Nov.), 140{150.

Bank, J. A., Liskov, B., and Myers, A. C. 1996. Parameterized types and Java. Tech. Rep.
MIT LCS TM-553, Laboratory for Computer Science, Massachussets Institute of Technology,
(May).

Barton, J., Chee, Y.-M., Charles, P., Karasick, M., Lieber, D., and Nackman, L.

1994. CodeStore { infrastructure for C++-knowledgeable tools. In OOPSLA'94 Workshop on
Object-Oriented Compilation Techniques, (Portland, Ore., Oct.).

Beck, K. 1994. Writing high-performance Smalltalk programs. In Proceedings of OOP'94/C++
World, (Munich, Germany, Jan.). OOP '94/C++ World. Conference Proceedings, p. 29.

Birtwistle, G. M., Dahl, O.-J., Myhrhaug, B., and Nygaard, K. 1973. Simula Begin.
Auerbach, Philadelphia, Penn.

Black, A., Hutchinson, N., Jul, E., Levy, H., and Carter, L. 1987. Distribution and
abstract types in Emerald. IEEE Trans. Softw. Eng., SE-13, 1 (Jan.), 65{76.

Bobrow, D. G., DeMichiel, L. G., Gabriel, R. P., Keene, S. E., Kiczales, G., and

Moon, D. A. 1988. Common Lisp Object System speci�cation X3J13 document 88-002R.
SIGPLAN Not., 23, special issue (Sept.), 1{48.

Boehm, H. J. 1989. Type inference in the presence of type abstraction. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, (Portland, Ore.,
June). SIGPLAN Not., 24, 7 (July), 192{206.

Bothner, P. 1997. A gcc-based Java implementation. In Digest of Papers, Spring COMPCON
1997, Forty-Second IEEE Computer Society International Conference, (San Jose, Calif., Feb.).
IEEE Computer Society Press, Los Alamitos, Calif., pp. 174{178.

Bruce, K. B., Schuett, A., and van Gent, R. 1995. PolyTOIL: a type-safe polymorphic
object-oriented language. In Olthoff, W., Ed., Proceedings of the Ninth European Confer-
ence on Object-Oriented Programming { ECOOP'95, volume 952 of Lecture Notes in Computer
Science, (Aarhus, Denmark, Aug.). Springer-Verlag, Berlin, Germany, pp. 27{51.

Burke, M., Carini, P., Choi, J.-D., and Hind, M. 1994. Flow-insensitive interprocedural
alias analysis in the presence of pointers. In Pingali, K., Banerjee, U., Gelernter, D.,

Nicolau, A., and Padua, D., Eds., Proceedings of the Seventh International Workshop on
Languages and Compilers for Parallel Computing, volume 892 of Lecture Notes in Computer
Science, (Ithaca, N.Y., Aug.). Springer-Verlag, Berlin, Germany, 1995, pp. 234{250.

BIBLIOGRAPHY 133

Burke, M., Srinivasan, H., and Sweeney, P. F. 1996. A framework for evaluating space and
time overhead for C++ object models. Tech. Rep. RC 20421, IBM Thomas J. Watson Research
Center, (Mar.).

Calder, B. and Grunwald, D. 1994. Reducing indirect function call overhead in C++ pro-
grams. In Conference Record of the Twenty-First ACM Symposium on Principles of Programming
Languages, (Portland, Ore., Jan.). ACM Press, New York, N.Y., pp. 397{408.

Calder, B., Grunwald, D., and Zorn, B. 1994. Quantifying behavioral di�erences between
C and C++ programs. Journal of Programming Languages, 2, 4 (Dec.), 313{351.

Cardelli, L. and Wegner, P. 1985. On understanding types, data abstraction, and polymor-
phism. ACM Comput. Surv., 17, 4 (Dec.), 471{522.

Carini, P., Hind, M., and Srinivasan, H. 1995. Type analysis algorithm for C++. Tech. Rep.
RC 20267, IBM Thomas J. Watson Research Center.

Caudill, P. J. and Wirfs-Brock, A. 1986. A third generation Smalltalk-80 implementa-
tion. In Proceedings of the Conference on Object Oriented Programming Systems, Languages, and
Applications, (Portland, Ore., Sept.). SIGPLAN Not., 21, 11 (Nov.), 119{130.

Chambers, C. 1992. The Design and Implementation of the SELF Compiler. Ph.D. thesis,
Stanford Univ., (Mar.).

Chambers, C. 1993. The Cecil language: Speci�cation and rationale. Tech. Rep. TR-93-03-05,
Dept. of Computer Science, Univ. of Washington, (Mar.).

Chambers, C., Dean, J., and Grove, D. 1996. Whole-program optimization of object-
oriented languages. Tech. Rep. 96-06-02, Dept. of Computer Science, Univ. of Washington, (June).

Chambers, C. and Ungar, D. 1989a. Customization: optimizing compiler technology for
SELF, a dynamically-typed object-oriented programming language. In ACM SIGPLAN '89 Con-
ference on Programming Language Design and Implementation, (Portland, Ore., June). SIGPLAN
Not., 24, 7 (July), 146{160.

Chambers, C. and Ungar, D. 1989b. Customization: Optimizing compiler technology
for SELF, a dynamically-typed object-oriented programming language. In Proceedings of the
SIGPLAN Conference on Programming Language Design and Implementation, (Portland, Ore.,
June). SIGPLAN Not., 24, 7 (July), 146{160.

Chambers, C. and Ungar, D. 1991a. Iterative type analysis and extended message splitting:
optimizing dynamically-typed object-oriented programs. LISP and Symbolic Computation, 4, 3
(July), 283{310.

Chambers, C. and Ungar, D. 1991b. Making pure object-oriented languages practical. In
Proceedings of the 1991 ACM Conference on Object Oriented Programming Systems, Languages,
and Applications, (Phoenix, Ariz., Oct.). SIGPLAN Not., 26, 11 (Nov.), 1{15.

Chambers, C., Ungar, D., Chang, B.-W., and Holzle, U. 1991a. Parents are shared parts
of objects: inheritance and encapsulation in SELF. LISP and Symbolic Computation, 4, 3 (July),
207{222.

Chambers, C., Ungar, D., and Lee, E. 1991b. An e�cient implementation of SELF, a
dynamically-typed object-oriented language based on prototypes. LISP and Symbolic Computa-
tion, 4, 3 (July), 243{281.

BIBLIOGRAPHY 134

Choi, J.-D., Burke, M., and Carini, P. 1993. E�cient
ow-sensitive interprocedural com-
putation of pointer-induced aliases and side e�ects. In Conference Record of the Twentieth ACM
Symposium on Principles of Programming Languages, (Charleston, South Carolina, Jan.). ACM
Press, New York, N.Y., pp. 232{245.

Cierniak, M. and Li, W. 1997. Briki: an optimizing Java compiler. In Digest of Papers,
Spring COMPCON 1997, Forty-Second IEEE Computer Society International Conference, (San
Jose, Calif., Feb.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 179{184.

Coggins, J. M. 1991. Why does this program run so long? C++ Report, 3, 6 (June), 21{24.

Coggins, J. M. 1993. Speed of C++ vs. C: Myths, data, and skepticism. C++ Report, (Jan.),
25{27.

Cooper, K. D., Hall, M. W., and Kennedy, K. 1993. A methodology for procedure cloning.
Computer Languages, 19, 2 (Apr.), 105{117.

Cytron, R., Ferrante, J., Rosen, B. K., Wegman, M. N., and Zadeck, F. K. 1991.
E�ciently computing static single assignment form and the control dependence graph. ACM
Trans. Program. Lang. Syst., 13, 4 (Oct.), 451{490.

Dahl, O.-J. and Myrhaug, B. 1973. Simula Implementation Guide. Oslo, Sweden, (Mar.).

Dahl, O.-J. and Nygaard, K. 1966. Simula { an Algol-based simulation language. Commun.
ACM, 9, 9 (Sept.), 671{678.

Dean, J., Chambers, C., and Grove, D. 1994. Identifying pro�table specialization in object-
oriented languages. In Proceedings of the ACM Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, (Orlando, Fla., June), pp. 85{96.

Dean, J., Chambers, C., and Grove, D. 1995. Selective specialization for object-oriented
languages. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation, (La Jolla, Calif., June). SIGPLAN Not., 30, 6, 93{102.

Dean, J., DeFouw, G., Grove, D., Litvinov, V., and Chambers, C. 1996. Vortex: an
optimizing compiler for object-oriented languages. In Proceedings of the 1996 ACM Conference
on Object Oriented Programming Systems, Languages, and Applications, (San Jose, Calif., Oct.).
SIGPLAN Not., 31, 10, 83{100.

Dean, J., Grove, D., and Chambers, C. 1995. Optimization of object-oriented programs
using static class hierarchy analysis. In Olthoff, W., Ed., Proceedings of the Ninth Euro-
pean Conference on Object-Oriented Programming { ECOOP'95, volume 952 of Lecture Notes in
Computer Science, (Aarhus, Denmark, Aug.). Springer-Verlag, Berlin, Germany, pp. 77{101.

Deutsch, L. P. and Schiffman, A. M. 1984. E�cient implementation of the Smalltalk-80
system. In Conference Record of the Eleventh ACM Symposium on Principles of Programming
Languages, (Salt Lake City, Utah, Jan.). ACM Press, New York, N.Y., pp. 297{302.

Diwan, A., Moss, J. E. B., and McKinley, K. S. 1996. Simple and e�ective analysis of
statically-typed object-oriented programs. In Proceedings of the 1996 ACM Conference on Object
Oriented Programming Systems, Languages, and Applications, (San Jose, Calif., Oct.). SIGPLAN
Not., 31, 10, 292{305.

Dixit, K. M. 1991. The SPEC benchmarks. Parallel Comput., 17, 1195{1209.

BIBLIOGRAPHY 135

Dixit, K. M. 1992. New CPU benchmarks from SPEC. In Digest of Papers, Spring COMPCON
1992, Thirty-Seventh IEEE Computer Society International Conference, (San Francisco, Calif.,
Feb.). IEEE Computer Society Press, Los Alamitos, Calif., pp. 305{310.

Dixon, R., McKee, T., Schweizer, P., and Vaughan, M. 1989. A fast method dispatcher
for compiled languages with multiple inheritance. In Proceedings of the 1989 ACM Conference on
Object Oriented Programming Systems, Languages, and Applications, (New Orleans, Louisiana,
Oct.). SIGPLAN Not., 24, 10, 211{214.

Driesen, K. 1993. Selector table indexing & sparse arrays. In Proceedings of the 1993 ACM
Conference on Object Oriented Programming Systems, Languages, and Applications, (Washing-
ton, D.C., Oct.). SIGPLAN Not., 28, 10, 259{270.

Driesen, K. and H�olzle, U. 1995. Minimizing row displacement dispatch tables. In Pro-
ceedings of the 1995 ACM Conference on Object Oriented Programming Systems, Languages, and
Applications, (Austin, Tex., Oct.). SIGPLAN Not., 30, 10, 141{155.

Driesen, K. and H�olzle, U. 1996. The direct cost of virtual function calls in C++. In
Proceedings of the 1996 ACM Conference on Object Oriented Programming Systems, Languages,
and Applications, (San Jose, Calif., Oct.). SIGPLAN Not., 31, 10, 306{323.

Driesen, K., H�olzle, U., and Vitek, J. 1995. Message dispatch on pipelined processors.
In Olthoff, W., Ed., Proceedings of the Ninth European Conference on Object-Oriented Pro-
gramming { ECOOP'95, volume 952 of Lecture Notes in Computer Science, (Aarhus, Denmark,
Aug.). Springer-Verlag, Berlin, Germany, pp. 253{282.

Edelsohn, D. J. 1994. A generalized expression optimization hook for C++ on a high-
performance architectures. In Proceedings of IEEE Scalable High Performance Computing Con-
ference, (Knoxville, Tennessee, May). IEEE Computer Society Press, Los Alamitos, Calif., pp.
381{387.

Ellis, M. and Stroustroup, B. 1990. The Annotated C++ Reference Manual. Addison-
Wesley, Reading, Mass.

Feinberg, N., Keene, S. E., Mathews, R. O., and Withington, P. T. 1997. Dylan
Programming: An Object-Oriented and Dynamic Language. Addison-Wesley, Reading, Mass.

Fernandez, M. F. 1995. Simple and e�ective link-time optimization of Modula-3 programs. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation,
(La Jolla, Calif., June). SIGPLAN Not., 30, 6, 103{115.

Goldberg, A. and Robson, D. 1983. Smalltalk-80: The Language and Its Implementation.
Addison-Wesley, Reading, Mass.

Gosling, J., Joy, B., and Steele, G. 1996. The Java Language Speci�cation. Addison-Wesley,
Reading, Mass.

Graver, J. O. 1989. Type-checking and Type-inference for Object-oriented Programming Lan-
guages. Ph.D. thesis, Univ. of Illinois at Urbana-Champaign.

Graver, J. O. and Johnson, R. E. 1990. A type system for Smalltalk. In Conference Record
of the Seventeenth ACM Symposium on Principles of Programming Languages, (San Francisco,
Calif., Jan.). ACM Press, New York, N.Y., pp. 136{150.

BIBLIOGRAPHY 136

Grove, D., Dean, J., Garrett, C., and Chambers, C. 1995. Pro�le-guided receiver
class prediction. In Proceedings of the 1995 ACM Conference on Object Oriented Programming
Systems, Languages, and Applications, (Austin, Tex., Oct.). SIGPLAN Not., 30, 10, 108{123.

Grove, D., DeFouw, G., Dean, J., and Chambers, C. 1997. Call graph construction
in object-oriented languages. In Proceedings of the 1997 ACM Conference on Object Oriented
Programming Systems, Languages, and Applications, (Atlanta, Ga., Oct.). SIGPLAN Not., 32,
10.

Hamilton, J. 1997. Montana smart pointers: They're smart, and they're pointers. In Proceedings
of the 1997 USENIX Conference on Object-Oriented Technologies and Systems, (Portland, Ore.,
June). Usenix Association, Berkeley, Calif.

Harbison, S. P. 1992. Modula-3. Prentice-Hall.

Henderson, R. and Zorn, B. 1994. A comparison of object-oriented programming in four
modern languages. Softw. Pract. Exper., 24, 11 (Nov.), 1077{1095.

Hennessy, J. L. and Patterson, D. A. 1990. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, San Mateo, Calif.

H�olzle, U. 1994. Adaptive Optimization for SELF: Reconciling High Performance with Ex-
ploratory Programming. Ph.D. thesis, Stanford Univ., (Aug.).

H�olzle, U. and Agesen, O. 1995. Dynamic versus static optimization techniques for object-
oriented languages. Theory and Practice of Object Systems, 1, 3, 167{188.

H�olzle, U., Chambers, C., and Ungar, D. 1991. Optimizing dynamically-typed object-
oriented languages with polymorphic inline caches. In America, P., Ed., Proceedings of the
European Conference on Object-Oriented Programming { ECOOP'91, volume 512 of Lecture Notes
in Computer Science, (Geneva, Switzerland, July). Springer-Verlag, Berlin, Germany, pp. 21{38.

H�olzle, U. and Ungar, D. 1994. A third-generation SELF implementation: reconciling
responsiveness with performance. In Proceedings of the 1994 ACM Conference on Object Oriented
Programming Systems, Languages, and Applications, (Portland, OR, Oct.). SIGPLAN Not., 29,
10, 229{243.

Hsieh, C.-H. A., Conte, M. T., Johnson, T. L., Gyllenhaal, J. C., and Hwu, W.-M. W.

1997. A study of the cache and branch performance issues with running Java on current hardware
platforms. In Digest of Papers, Spring COMPCON 1997, Forty-Second IEEE Computer Society
International Conference, (San Jose, Calif., Feb.). IEEE Computer Society Press, Los Alamitos,
Calif., pp. 211{216.

Hsieh, C.-H. A., Gyllenhaal, J. C., and Hwu, W. W. 1996. Java bytecode to native code
translation: the Ca�eine prototype and preliminary results. In Proceedings of the 29th Annual
International Symposium on Microarchitecture, (Paris, France, Dec.). IEEE Computer Society
Press, Los Alamitos, Calif., pp. 90{97.

Ingalls, D. H. 1986. A simple technique for handling multiple polymorphism. In Proceed-
ings of the Conference on Object Oriented Programming Systems, Languages, and Applications,
(Portland, Ore., Sept.). SIGPLAN Not., 21, 11 (Nov.), 347{349.

Johnson, R. E. 1986. Type-checking Smalltalk. In Proceedings of the Conference on Object
Oriented Programming Systems, Languages, and Applications, (Portland, Ore., Sept.). SIGPLAN
Not., 21, 11 (Nov.), 315{321.

BIBLIOGRAPHY 137

Johnson, R. E., Graver, J. O., and Zurawski, L. W. 1988. TS: an optimizing compiler
for Smalltalk. In Proceedings of the 1988 ACM Conference on Object Oriented Programming
Systems, Languages, and Applications, (San Diego, Calif., Sept.). SIGPLAN Not., 23, 11 (Nov.),
18{26.

Jones, N. D., Gomarde, C. K., and Sestoft, P. 1993. Partial Evaluation and Automatic
Program Generation. Prentice-Hall, Englewood Cli�s, N.J.

Jones, N. D. and Muchnick, S. 1976. Binding time optimization in programming languages.
In Conference Record of the Third ACM Symposium on Principles of Programming Languages,
(Atlanta, Ga., Jan.). ACM Press, New York, N.Y., pp. 77{94.

Kaplan, M. A. and Ullman, J. D. 1980. A scheme for the automatic inference of variable
types. J. ACM, 27, 1 (Jan.), 128{145.

Kiczales, G. and Rodriguez, L. 1990. E�cient method dispatch in PCL. In Proceedings of
the 1990 ACM Conference on LISP and Functional Programming, (Nice, France, June). ACM
Press, New York, N.Y., pp. 99{105.

Kozen, D., Palsberg, J., and Schwartzbach, M. I. 1994. E�cient inference of partial
types. J. Comput. Syst. Sci., 49, 2 (Oct.), 306{324.

Krogdahl, S. 1985. Multiple inheritance in Simula-like languages. BIT, 25, 2, 318{326.

Lambridge, H. D. 1997. Java bytecode optimizations. In Digest of Papers, Spring COMPCON
1997, Forty-Second IEEE Computer Society International Conference, (San Jose, Calif., Feb.).
IEEE Computer Society Press, Los Alamitos, Calif., pp. 206{210.

Landi, W., Ryder, B. G., and Zhang, S. 1993. Interprocedural modi�cation side e�ect
analysis with pointer aliasing. In Proceedings of the SIGPLAN Conference on Programming
Language Design and Implementation, (Albuquerque, New Mexico, June). SIGPLAN Not., 28,
6, 56{67.

Larcheveque, J. M. 1994. Interprocedural type propagation for object-oriented languages.
Sci. Comput. Programming, 22, 3 (June), 257{282.

Lea, D. 1990. Customization in C++. In Proceedings of the 1990 USENIX C++ Conference,
(San Francisco, Calif., Apr.). Usenix Association, Berkeley, Calif., pp. 301{314.

Lee, Y. and Serrano, M. J. 1995. Dynamic measurements of C++ program characteristics.
Tech. Rep. STL TR 03.600, IBM Santa Teresa Laboratory, (Jan.).

Lindholm, T. and Yellin, F. 1997. The Java Virtual Machine Speci�cation. Addison-Wesley,
Reading, Mass.

Meyer, B. 1992. Ei�el: The Language. Prentice-Hall, Englewood Cli�s, N.J.

Meyers, S. 1995. Writing e�cient C++ programs. In Object Expo Europe 1995 Objects Expo
Europe '95, (London, England, Sept.). Object Expo Europe 1995, pp. 186{187.

Milner, R. 1978. A theory of type polymorphism in programming. J. Comput. Syst. Sci., 17,
3 (Dec.), 348{375.

Morris, J. H. 1968. Lambda-Calculus Models of Programming Languages. Ph.D. thesis, Mas-
sachussets Institute of Technology.

BIBLIOGRAPHY 138

Mossenbock, H. and Wirth, N. 1991. The programming language Oberon-2. Tech. rep.,
Institue for Computer Systems, ETH, Zurich.

Myers, A. C. 1995. Bidirectional object layout for separate compilation. In Proceedings of the
1995 ACM Conference on Object Oriented Programming Systems, Languages, and Applications,
(Austin, Tex., Oct.). SIGPLAN Not., 30, 10, 124{139.

Nackman, L. R. and Barton, J. J. 1994. Base-Class Composition with Multiple Derivation
and Virtual Bases. In Proceedings of the 1994 USENIX C++ Conference, (Cambridge, Mass.,
Apr.). Usenix Association, Berkeley, Calif., pp. 57{71.

Nair, R. 1994. Performance evaluation of C++ applications on the IBM RS/6000. Unpublished
IBM Con�dential Report, Nov. 1994.

Nygaard, K. and Dahl, O.-J. 1978. The development of the SIMULA languages. In Proceed-
ings of the ACM SIGPLAN History of Programming Languages Conference, (Los Angeles, Calif.,
June). SIGPLAN Not., 13, 8 (Aug.), 245{272.

Oxh�j, N., Palsberg, J., and Schwartzbach, M. I. 1992. Making type inference practical. In
Madsen, O. L., Ed., Proceedings of the European Conference on Object-Oriented Programming
{ ECOOP'92, volume 615 of Lecture Notes in Computer Science, (Utrecht, Netherlands, June).
Springer-Verlag, Berlin, Germany, pp. 329{349.

Palsberg, J. and Schwartzbach, M. I. 1991. Object-oriented type inference. In Proceed-
ings of the 1991 ACM Conference on Object Oriented Programming Systems, Languages, and
Applications, (Phoenix, Ariz., Oct.). SIGPLAN Not., 26, 11 (Nov.), 146{161.

Palsberg, J. and Schwartzbach, M. I. 1994a. Object-Oriented Type Systems. John Wiley
and Sons, New York, N.Y.

Palsberg, J. and Schwartzbach, M. I. 1994b. Static typing for object-oriented programming.
Sci. Comput. Programming, 23, 1 (Oct.), 19{53.

Palsberg, J. and Schwartzbach, M. I. 1995. Safety analysis versus type inference. Infor-
mation and Computation, 118, 1 (Apr.), 128{141.

Pande, H. D. and Ryder, B. G. 1994. Static type determination for C++. In Proceedings
of the 1994 USENIX C++ Conference, (Cambridge, Mass., Apr.). Usenix Association, Berkeley,
Calif., pp. 85{97.

Pande, H. D. and Ryder, B. G. 1995. Static type determination and aliasing for C++.
Tech. Rep. LCSR-TR-250, Dept. of Computer Science, Rutgers University, (July).

Pande, H. D. and Ryder, B. G. 1996. Data-
ow-based virtual function resolution. In
Proceedings of the Third International Static Analysis Symposium, volume 1145 of Lecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany, pp. 238{254.

Plevyak, J. and Chien, A. A. 1994. Precise concrete type inference for object-oriented
languages. In Proceedings of the 1994 ACM Conference on Object Oriented Programming Systems,
Languages, and Applications, (Portland, OR, Oct.). SIGPLAN Not., 29, 10, 324{340.

Plevyak, J. and Chien, A. A. 1995. Type directed cloning for object-oriented programs.
In Huang, C.-H., Sadayappan, P., Banerjee, U., Gelernter, D., Nicolau, A., and

Padua, D., Eds., Proceedings of the Eighth International Workshop on Languages and Compilers
for Parallel Computing, volume 1033 of Lecture Notes in Computer Science, (Columbus, Ohio,
Aug.). Springer-Verlag, Berlin, Germany, 1996, pp. 566{580.

BIBLIOGRAPHY 139

Porat, S., Bernstein, D., Fedorov, Y., Rodrigue, J., and Yahav, E. 1996. Compiler
optimizations of C++ virtual function calls. In Proceedings of the Second Conference on Object-
Oriented Technologies and Systems, (Toronto, Canada, June). Usenix Association, pp. 3{14.

Proebsting, T. A., Townsend, G., Bridges, P., Hartman, J. H., Newsham, T., and

Watterson, S. A. 1997. Toba: Java for applications { a way ahead of time (WAT) compiler.
In Proceedings of the 1997 USENIX Conference on Object-Oriented Technologies and Systems,
(Portland, Ore., June). Usenix Association, Berkeley, Calif.

Pugh, W. and Weddell, G. 1990. Two-directional record layout for multiple inheritance. In
Proceedings of the SIGPLAN Conference on Programming Language Design and Implementation,
(White Plains, N.Y., June). SIGPLAN Not., 25, 6, 85{91.

Reynolds, J. C. 1969. Automatic computation of data set de�nitions. In Information Processing
'68. North-Holland Publishing Company, Amsterdam, pp. 456{461.

Rose, J. R. 1988. Fast dispatch mechanisms for stock hardware. In Proceedings of the 1988
ACM Conference on Object Oriented Programming Systems, Languages, and Applications, (San
Diego, Calif., Sept.). SIGPLAN Not., 23, 11 (Nov.), 27{35.

Ruf, E. and Weise, D. 1991. Using types to avoid redundant specialization. In Proceedings of
the ACM Symposium on Partial Evaluation and Semantics-Based Program Manipulation, (New
Haven, Conn., June). SIGPLAN Not., 26, 9 (Sept.), 321{333.

Ryder, B. G. 1979. Constructing the call graph of a program. IEEE Trans. Softw. Eng., SE-5,
3 (May), 216{226.

Schwartzbach, M. I. 1991. Type inference with inequalities. InAbramsky, S. and Maibaum,

T. S., Eds., Proceedings of the International Joint Conference on Theory and Practice of Software
Development, volume 493 of Lecture Notes in Computer Science, (Brighton, England, Apr.).
Springer-Verlag, Berlin, Germany, pp. 441{455.

Serrano, M., 1997. Personal communication. IBM Santa Teresa Laboratory, 1997.

Seshadri, V. 1997. IBM high performance compiler for Java: An optimizing native code
compiler for Java applications. AIXpert, (Sept.).

Soroker, D., Karasick, M., Barton, J., and Streeter, D. 1997. Extension mechanisms
in Montana. In Proceedings of the Eighth Israel Conference on Computer Systems and Software
Engineering, (Herzliya, Israel, June).

Srinivasan, H. and Sweeney, P. F. 1996. Evaluating virtual dispatch mechanisms for C++.
Tech. Rep. RC 20330, IBM Thomas J. Watson Research Center, (Jan.).

Srivastava, A. 1992. Unreachable procedures in object-oriented programming. ACM Letters
on Programming Languages and Systems, 1, 4 (Dec.), 355{364.

Steensgaard, B. 1996a. Points-to analysis by type inference of programs with structures and
unions. In Gyimothy, T., Ed., Proceedings of the Sixth International Conference on Compiler
Construction, volume 1060 of Lecture Notes in Computer Science, (Linkoping, Sweden, Apr.).
Springer-Verlag, Berlin, Germany, pp. 136{150.

Steensgaard, B. 1996b. Points-to analysis in almost linear time. In Conference Record of
the Twenty-Third ACM Symposium on Principles of Programming Languages, (St. Petersburg
Beach, Fla., Jan.). ACM Press, New York, N.Y., pp. 32{41.

BIBLIOGRAPHY 140

Stroustrup, B. 1986. The C++ Programming Language. Addison-Wesley, Reading, Mass.

Stroustrup, B. 1989. Parameterized types for C++. Computing Syst., 2, 1 (Winter), 55{85.

Subramanian, S., Tsai, W.-T., and Kirani, S. H. 1994. Hierarchical data
ow analysis for
O-O programs. Journal of Object-Oriented Programming, 7, 2 (May), 36{46.

S�udholt, M. and Steigner, C. 1992. On interprocedural data
ow analysis for object oriented
languages. In Kastens, U. and Pfahler, P., Eds., Proceedings of the Fourth International
Conference on Compiler Construction, volume 641 of Lecture Notes in Computer Science, (Pader-
born, Germany, Oct.). Springer-Verlag, Berlin, Germany, pp. 156{162.

Suzuki, N. 1981. Inferring types in Smalltalk. In Conference Record of the Eighth ACM
Symposium on Principles of Programming Languages, (Williamsburg, Va., Jan.). ACM Press,
New York, N.Y., pp. 187{199.

Sweeney, P. F., 1997. Personal communication. IBM Thomas J. Watson Research Center,
1997.

Sweeney, P. F. and Tip, F. 1997. A study of dead data members in C++ applications.
Tech. Rep. RC 21051, IBM Thomas J. Watson Research Center, (Nov.).

Tennenbaum, A. 1974. Type determination for very high level languages. Tech. Rep. NSO-3,
Courant Institute of Mathematical Sciences, New York Univ., New York, N.Y.

Tip, F., Choi, J.-D., Field, J., and Ramalingam, G. 1996. Slicing class hierarchies in
C++. In Proceedings of the 1996 ACM Conference on Object Oriented Programming Systems,
Languages, and Applications, (San Jose, Calif., Oct.). SIGPLAN Not., 31, 10, 179{197.

Tyma, P. 1996. Tuning Java performance. Dr. Dobb's Journal, 21, 4 (Apr.), 52, 55{6, 58.

Ungar, D. 1986. Design and Implementation of a High-performance Smalltalk System. MIT
Press, Cambridge, Mass.

Ungar, D., Chambers, C., Chang, B.-W., and H�olzle, U. 1991. Organizing programs
without classes. LISP and Symbolic Computation, 4, 3 (July), 223{242.

Ungar, D. and Smith, R. B. 1987. SELF: the power of simplicity. In Proceedings of the
1987 ACM Conference on Object Oriented Programming Systems, Languages, and Applications,
(Orlando, Fla., Oct.). SIGPLAN Not., 22, 12, 227{241.

Ungar, D., Smith, R. B., Chambers, C., and Holzle, U. 1992. Object, message, and
performance: how they coexist in Self. Computer, 25, 10 (Oct.), 53{64.

Vitek, J. and Horspool, R. N. 1994. Taming message passing: e�cient method look-
up for dynamically typed languages. In Nierstrasz, O. M., Ed., Proceedings of the Eighth
European Conference on Object-Oriented Programming { ECOOP'94, volume 821 of Lecture Notes
in Computer Science, (Bologna, Italy, July). Springer-Verlag, Berlin, Germany, pp. 432{449.

Vitek, J. and Horspool, R. N. 1996. Compact dispatch tables for dynamically typed object
oriented languages. In Gyimothy, T., Ed., Compiler Construction. 6th International Confer-
ence, CC'96. Proceedings Proceedings of CC: International Conference on Compiler Construction,
(Linkoping, Sweden, Apr.). Springer-Verlag, pp. 309{325.

BIBLIOGRAPHY 141

Vitek, J., Horspool, R. N., and Uhl, J. S. 1992. Compile-time analysis of object-oriented
programs. In Kastens, U. and Pfahler, P., Eds., Proceedings of the Fourth International
Conference on Compiler Construction, volume 641 of Lecture Notes in Computer Science, (Pader-
born, Germany, Oct.). Springer-Verlag, Berlin, Germany, pp. 236{250.

Wand, M. 1987. A simple algorithm and proof for type inference. Fundamenta Informaticae,
10, 2 (June), 115{121.

Weise, D., Conybeare, R., Ruf, E., and Seligman, S. 1991. Automatic online partial
evaluation. In Hughes, J., Ed., Functional Programming Languages and Computer Architecture:
5th ACM Conference, volume 523 of Lecture Notes in Computer Science, (Cambridge, Mass.,
Aug.). Springer-Verlag, Berlin, Germany, pp. 165{191.

Wilcox, C. R., Dageforde, M. L., and Jirak, G. A. 1978. MAINSAIL Language Manual.
Stanford Univ., (Oct.).

Wu, P.-C. and Wang, F.-J. 1996. On e�ciency and optimization of C++ programs. Softw.
Pract. Exper., 26, 4 (Apr.), 453{465.

