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ABSTRACT
Propagation-based call graph construction algorithms have
been studied intensively in the 1990s, and differ primarily in
the number of sets that are used to approximate run-time
values of expressions. In practice, algorithms such as RTA
that use a single set for the whole program scale well. The
scalability of algorithms such as 0-CFA that use one set per
expression remains doubtful.

In this paper, we investigate the design space between RTA
and 0-CFA. We have implemented various novel algorithms
in the context of Jax, an application extractor for Java, and
shown that they all scale to a 325,000-line program. A key
property of these algorithms is that they do not analyze
values on the run-time stack, which makes them efficient and
easy to implement. Surprisingly, for detecting unreachable
methods, the inexpensive RTA algorithm does almost as well
as the seemingly more powerful algorithms. However, for
determining call sites with a single target, one of our new
algorithms obtains the current best tradeoff between speed
and precision.

1. INTRODUCTION
A key task that is required by most approaches to whole-
program optimization is the construction of a call graph ap-
proximation. Using a call graph, one can remove methods
that are not reachable from the main method, replace dy-
namically dispatched method calls with direct method calls,
inline methods calls for which there is a unique target, and
perform more sophisticated optimizations such as interpro-
cedural constant propagation, object inlining, and transfor-
mations of the class hierarchy. In the context of object-
oriented languages with dynamic dispatch, the crucial step
in constructing a call graph is to compute a conservative
approximation of the set of methods that can be invoked by
a given virtual (i.e., dynamically dispatched) method call.
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Call-graph construction algorithms have been studied inten-
sively in the 1990s. While their original formulations use a
variety of formalisms, most of them can be recast as set-
based analyses. The common idea is to abstract an object
into the name of its class, and to abstract a set of objects
into the set of their classes. For any given call site e.m(),
the goal is then to compute a set of class names Se that
approximates the run-time values of the receiver expression
e. Once the sets Se are determined for all expressions e,
the class hierarchy can be examined to identify the methods
that can be invoked.

Most call graph construction algorithms differ primarily in
the number of sets that are used to approximate run-time
values of expressions. Examples:

Number of sets used to Algorithm name
approximate run-time values
of expressions

No sets Class Hierarchy Analysis
(CHA) [9, 10]

One set for the whole program Rapid Type Analysis
(RTA) [6, 5]

One set per expression 0-CFA (Control-Flow
Analysis) [33, 17]

Several sets per expression k-CFA, k > 0 [33, 17]

Intuitively, algorithms that use more sets compute more pre-
cise call graphs, but need more time and space to do the
construction. In practice, the scalability of the algorithms
at either end of the spectrum is fairly clear. The CHA and
RTA algorithms at the low end of the range scale well and
are widely used. The k-CFA algorithms (for k > 0) at the
high end seem not to scale well at all [17]. The scalability of
0-CFA remains doubtful, mostly due to the large amounts
of space required to represent the many different sets that
arise. Recent work by Fähndrich et al. [14, 37] give grounds
for optimism, although their recent results are obtained on a
machine with 2,048 Megabytes of memory [37]. In the case
of Java, another complicating factor for 0-CFA is that sets
of class names need to be computed for locations on the run-
time stack. Those locations are unnamed, and to facilitate
0-CFA, it seems necessary to first do a program transforma-
tion that names all the locations in some fashion, as done
in various recent work [41, 38, 21]. Such transformations
introduce both time and space overhead.
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With the investigation of the scalability of 0-CFA still pend-
ing, our research focuses on the following questions:

• Are there interesting design points in the space be-
tween RTA and 0-CFA?

• Can we achieve better precision than RTA without an-
alyzing values on the run-time stack?

We have implemented several novel algorithms in the con-
text of Jax, an application extractor for Java, and shown
that they all scale to a 325,000-line program. A key prop-
erty of the algorithms is that they do not require simulation
of the run-time stack, which makes them easy to implement
and which helps efficiency. Our algorithms associate a single
distinct set with each class, method, and/or field (but not
each expression) in an application. Surprisingly, for detect-
ing unreachable methods, the inexpensive RTA does almost
as well as the seemingly more powerful algorithms. However,
for determining call sites with a single target, one of our new
algorithms obtains the current best tradeoff between speed
and precision.

In summary, the results for the most precise of the new
algorithms look as follows:

• The constructed call graphs tend to contain only
slightly fewer method definitions (i.e., methods that
have a body) when compared to RTA: up to 3.0%
fewer method definitions, and 1.6% fewer method def-
initions on average, but in several cases significantly
fewer edges (i.e., calling relationships between method
definitions): up to 29.0% fewer edges, and 7.2% fewer
edges on average.

• An in-depth study of the constructed call graphs re-
vealed that the most precise of our algorithms uniquely
resolves up to 26.3% of the virtual call sites that are
deemed polymorphic by RTA (12.5% on average).

• Associating a distinct set of types with each method in
a class has a significantly greater impact on precision
than using a distinct set for each field in a class.

• The algorithms scale well: the running time is within
an order of magnitude of a well-tuned RTA implemen-
tation in all cases. The most precise of our algorithms
runs up to 8.3 times slower than RTA, and the cor-
relation of this “slowdown factor” with program size
appears to be weak (for the largest benchmark, our
most expensive algorithm ran 5.0 times slower than
RTA).

• The algorithms do not require exorbitant amounts of
space. All our measurements were performed on a IBM
ThinkPad 600E PC with 288 MB memory. None of our
benchmarks required more than 200MB of heap space.

The remainder of this paper is organized as follows. Sec-
tion 2 presents our new algorithms, and discusses their rela-
tion to several previous algorithms such as RTA. Section 3
discusses implementation issues. In Section 4, we compare

the results computed by the new algorithms with those ob-
tained with RTA. Section 5 presents related work. Finally,
directions for future work are presented in Section 6.

2. THE ALGORITHMS
We will use a set-based framework to present both some ex-
isting and some new algorithms. This will enable easy com-
parison and help put our work in context. Figure 1 shows
the relationships between four new algorithms (shown in a
shaded area, and code-named CTA, MTA, FTA, and XTA)
that will be presented shortly, and four well-known previous
algorithms: RA (Reachability Analysis), CHA (Class Hier-
archy Analysis), RTA (Rapid Type Analysis), and 0-CFA.
The ordering from left to right corresponds to increased ac-
curacy and increased cost. The increased cost stems from
increased amounts of information used in resolving virtual
method calls. The algorithms to the left of the new algo-
rithms have been shown to scale well, whereas the scalability
of 0-CFA remains doubtful. In Section 4, we will present re-
sults that demonstrate the scalability of the new algorithms.

2.1 Previous Algorithms
Since our new algorithms can be viewed as a natural “next
step” with respect to previous work, we will first discuss
some relevant previous algorithms. These algorithms pro-
gressively take more information into account when resolv-
ing virtual method calls.

2.1.1 Name-Based Resolution (RA)
We will begin by giving a set-constraint formulation of Reach-
ability Analysis (RA), a simple algorithm for constructing
call graphs that only takes into account the name of a method.
(A slightly more advanced version of this algorithm relies on
the equality of method signatures instead of method names.)
Variations of RA have been presented in many places (see,
e.g., [34]) and used in the context of tree-shakers for Lisp
[16].

RA can be defined in terms of a set variable R (for “reach-
able methods”) that ranges over sets of methods, and the
following constraints, derived from the program text:

1. main ∈ R (main denotes the main method in the
program)

2. For each method M , each virtual call site e.m(. . .) oc-
curring in M , and each method M ′ with name m:

(M ∈ R) ⇒ (M ′ ∈ R).

Intuitively, the first constraint reads “the main method is
reachable,” and the second constraint reads “if a method is
reachable, and a virtual method call e.m(. . .) occurs in its
body, then every method with name m is also reachable.”
It is straightforward to show that there is a least set R that
satisfies the constraints, and a solution procedure that com-
putes that set. The reason for computing the least R that
satisfies the constraints is that this maximizes the comple-
ment of R, i.e., the set of unreachable methods that can be
removed safely.
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cost and accuracy
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Figure 1: Schematic overview of the algorithms studied in this paper, and their relationship to several previous

algorithms.

2.1.2 Class Hierarchy Analysis (CHA)
We can extend the constraint system for the basic reacha-
bility analysis to also take class hierarchy information into
account. The result is known as class hierarchy analysis
(CHA) [9, 10]. We will use the notation StaticType(e) to
denote the static type of the expression e, SubTypes(t) to
denote the set of declared subtypes of type t, and the no-
tation StaticLookup(C,m) to denote the definition (if any)
of a method with name m that one finds when starting a
static method lookup in the class C. Like RA, CHA uses
just one set variable R ranging over sets of methods. The
constraints:

1. main ∈ R (main denotes the main method in the
program)

2. For each method M , each virtual call site
e.m(. . .) occurring in M , and each class C ∈

SubTypes(StaticType(e)) where StaticLookup(C, m) =
M ′:

(M ∈ R) ⇒ (M ′ ∈ R).

Intuitively, the second constraint reads: “if a method is
reachable, and a virtual method call e.m(. . .) occurs in the
body of that method, then every method with name m that
is inherited by a subtype of the static type of e is also reach-
able.”

2.1.3 Rapid Type Analysis (RTA)
We can further extend CHA to take class-instantiation in-
formation into account. The result is known as rapid type
analysis (RTA) [6, 5]. RTA uses both a set variable R rang-
ing over sets of methods, and a set variable S which ranges
over sets of class names. The variable S approximates the
set of classes for which objects are created during a run of
the program. The constraints:

1. main ∈ R (main denotes the main method in the
program)

2. For each method M , each virtual call site
e.m(. . .) occurring in M , and each class C ∈

SubTypes(StaticType(e)) where StaticLookup(C, m) =
M ′:

(M ∈ R) ∧ (C ∈ S) ⇒ (M ′ ∈ R).

3. For each method M , and for each “new C()” occurring
in M :

(M ∈ R) ⇒ (C ∈ S).

Intuitively, the second constraint refines the corresponding
constraint of CHA by insisting that C ∈ S, and the third
constraint reads: “S contains the classes that are instanti-
ated in a reachable method.”

RTA is easy to implement, scales well, and has been shown
to compute call graphs that are significantly more precise
than those computed by CHA [6]. We are aware of several
whole-program analysis systems that rely on RTA to com-
pute call graphs (e.g., the Jax application extractor of [40].)
In Section 4, we will use RTA as the baseline against which
we compare the new call graph construction algorithms that
we are about to present.

2.2 New Algorithms
The new algorithms use multiple set variables that range
over sets of classes. We will associate these set variables
with program entities such as classes, methods, and fields.
The idea is that by giving each program entity a more precise
“local” view of the types of objects available, call sites may
be resolved more accurately.

2.2.1 Separate sets for methods and fields (XTA)
We will first present an algorithm that uses a distinct set
variable SM for each method M , and a distinct set vari-
able Sx for each field x. We call this analysis XTA. We
will use the notation ParamTypes(M) for the set of static
types of the arguments of the method M (excluding method
M ’s this pointer), and the notation ReturnType(M) for
the static return type of M . We also extend the function
SubTypes(·) to work on a set of types:

SubTypes(Y ) =
�

y∈Y

SubTypes(y)

The following constraints define XTA:

1. main ∈ R (main denotes the main method in the
program)

2. For each method M , each virtual call site
e.m(. . .) occurring in M , and each class C ∈
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SubTypes(StaticType(e)) where StaticLookup(C, m) =
M ′:

(M ∈ R) ∧ (C ∈ SM )

⇒

���� ���
M ′ ∈ R ∧

SubTypes(ParamTypes(M ′)) ∩ SM ⊆ SM′ ∧

SubTypes(ReturnType(M ′)) ∩ SM′ ⊆ SM ∧

C ∈ SM′

3. For each method M , and for each “new C()” occurring
in M :

(M ∈ R) ⇒ C ∈ SM

4. For each method M in which a read of a field x occurs:
(M ∈ R) ⇒ Sx ⊆ SM

5. For each method M in which a write of a field x occurs:
(M ∈ R) ⇒

(SubTypes(StaticType(x)) ∩ SM ) ⊆ Sx

Intuitively, the second constraint refines the corresponding
constraint of RTA by (i) insisting that objects of the target
class C are available in the local set SM associated with M ,
(ii) adding two inclusions that capture a flow of data from
M to M ′, and from M ′ back to M , and (iii) stating that an
object of type C (the “this” pointer) is available in M ′. The
third constraint refines the corresponding constraint of RTA
by adding the class name C to just the set variable for the
method M . The fourth constraint reflects a data flow from
a field to a method body, and the fifth constraint reflects a
data flow from a method body to a field, taking hierarchy
information and creation point information into account.

2.2.2 Algorithms in the space between RTA and XTA
There is a spectrum of analyses between RTA and XTA. We
have experimented with the following ones:

• CTA: The algorithm CTA uses a distinct set variable
SC for each class C. Intuitively, the set variable SC

unifies the flow information for all methods and fields.
The constraints for CTA can be obtained by adding
the following constraints to the definition of XTA:

1. If a class C defines a method M : SC = SM .

2. If a class C defines a field x: SC = Sx.

• MTA: The algorithm MTA uses a distinct set vari-
able SC for each class C, and a set variable Sx for
every field x. Intuitively, the set variable SC unifies
the flow information for all methods (but not fields.)
The constraints for MTA can be obtained by adding
the following constraints to the definition of XTA:

1. If a class C defines a method M : SC = SM .

• FTA: The algorithm FTA uses a distinct set variable
SC for each class C, and a set variable SM for every
method M . Intuitively, the set variable SC unifies the
flow information for all fields (but not methods.) The
constraints for MTA can be obtained by adding the
following constraints to the definition of XTA:

1. If a class C defines a field x: SC = Sx.

Many other possibilities exist. For example, one could unify
the sets associated with fields in the same class if they have
the same type.

2.2.3 Summary
Let us now summarize the algorithms with which we have
done experiments. For a given program, define:

C : the number of classes in the program
M : the number of methods in the program
F : the number of fields in the program.

In the following table, the first column gives the number of
set variables used to approximate run-time values of expres-
sions.

Number of sets Algorithm
0 CHA
1 RTA
C CTA

C + F MTA
C + M FTA
M + F XTA

All of our new algorithms and also 0-CFA can be executed
in O(n2 × C) time, where n is the number of set variables
[28]. We can view 0-CFA as an extension of XTA in the fol-
lowing way. Rather than using just one set variable for each
method, 0-CFA uses one set variable for each argument and
each expression that evaluates to an object, including refer-
ences to objects on the run-time stack. The main problem
for 0-CFA is that stack locations are unnamed in the Java
virtual machine, so it seems necessary to first do a program
transformation that names all the locations in some fashion,
as done in various recent work [41, 38, 21].

The lattice that was shown previously in Figure 1 illustrates
the relationships between the algorithms in terms of cost and
accuracy. Section 5 discusses further how these algorithms
compare to other algorithms.

3. IMPLEMENTATION ISSUES
We implemented several of the new algorithms of Section 2
in the context of Jax, an application extractor for Java [40].
Our implementation relies on “JikesBT” (IBM’s Jikes Byte-
code Toolkit)1 for reading in the Java class files that consti-
tute an application, and for creating an internal represen-
tation of the classes in which the string-based references of
the class file format are represented by pointer references.
Jax uses RTA for constructing call graphs, and our new al-
gorithms reuse several important data structures that were
previously designed for RTA. Since the algorithms of Sec-
tion 2 are fairly simple, the amount of new code we had to
write is only about 4000 lines.

The implementation performs the XTA algorithm in an it-
erative, propagation-based style. Three work-lists are asso-
ciated with each program component (i.e., method or field)
1Jikes Bytecode Toolkit is a publically available
class library for manipulating Java class files. See
www.alphaworks.ibm.com/tech/jikesbt.
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that keep track of “processed” types that have been prop-
agated onwards from the component to other components,
“current” types that will be propagated onwards in the cur-
rent iteration, and “new” types that are propagated to the
component in the current iteration and that will be propa-
gated onwards in the next iteration.

The FTA and MTA algorithms are implemented by using
a shared set for all the methods and fields in a class, re-
spectively. Note that in the case of MTA (FTA) propaga-
tions between different methods (fields) in the same class
are not needed. However, once a type is propagated to a
method (field) in class C, the other methods (fields) in C

still have to be revisited because onward propagations from
those methods (fields) may have to take place. Due to time
constraints, we have not completed the implementation of
the CTA algorithm yet.

We use a combination of array-based and hash-based data
structures that allow efficient membership-test operations,
element addition, and iteration through all elements. We
found that it is important to make all of these operations
very efficient. Since the propagation of elements is filtered
by types of method parameters, method return types, and
types of fields, it is very important to efficiently implement
subtype-tests. We use an approach described in [42] that re-
lies on associating two integers with each class, correspond-
ing to a pre-order and a post-order traversal of the class
hierarchy. Using this numbering scheme, the existence of a
subclass-relationship between two classes can be determined
in unit time by comparing the associated numbers.

Applying the algorithms to realistic Java applications forced
us to address several pragmatic issues:

direct method calls. Direct method calls can be modeled
using simple set-inclusions between the sets associated
with the callee and the caller.

arrays. Arrays are modeled as classes with one instance
field that represents all of its elements. A method m

is assumed to read an element from array A if: (i)
an object of type A is propagated to m, and (ii) m

contains an aaload byte code instruction. Similarly,
a method m is assumed to write to A-element if: (i)
an object of type A is propagated to m, and (ii) m

contains an aastore instruction.

exception handling. The use of exception handling may
cause nontrivial flow of types between methods, since
exception objects may skip several stack frames before
being caught. Any approach for tracking this flow of
types precisely is fraught with complexity, and—in our
opinion— unlikely to be very worthwhile, since the
number of types involved is likely to be small (only
subtypes of java.lang.Throwable are involved), and
the hierarchy of user-defined exception types is often
not very large or complex. Therefore, we use a single,
global set of types that represents the run-time type of
all expressions in the entire program whose static type
is a subtype of java.lang.Throwable, and use that set
to resolve all method calls on exception objects.

stack examination. While conducting experiments, we

observed that better precision along with greater effi-
ciency can be achieved by examining the instruction
that follows a method call (or field read). If this in-
struction is of the form checkcast C, an exception is
thrown unless the run-time type of the object returned
by the method) is a subtype of C. In such cases, we
can exclude from the types being propagated to the
calling method any type that is not a subtype of C.
Similarly, if the instruction that follows a method call
is a stack pop operation, we can avoid propagating
from the callee to the caller altogether. These situa-
tions occur frequently in the presence of polymorphic
containers such as vectors and hash-tables.

incomplete applications. While we have described how
our algorithms construct call graphs for complete ap-
plications with a single entry point, any realistic im-
plementation must deal with situations where applica-
tions extend classes in the standard libraries, call li-
brary methods, and override library methods that are
invoked from outside the application. Our basic ap-
proach is to associate a single set of objects SE with
the “outside world” (i.e., all code outside the applica-
tion). This set interacts with the other sets as follows:

• If a method m calls a method m′ outside the ap-
plication, we propagate (Sm ∩ ParamTypes(m′))
to SE. For virtual methods, any types passed via
the this pointer are also propagated to SE .

• Whenever a method m writes to a field f outside
the application, we propagate (Sm ∩ Type(f)) to
SE . Read-accessing an external field causes simi-
lar flow in the opposite direction.

• If a virtual method in the application overrides
an external method m, we make the conservative
assumption that the external code contains a call
to m′. Our approach is to use the set SE to deter-
mine the set of methods in the application that
may be invoked by the dynamic dispatch mecha-
nism. For each such method m′, we use the pa-
rameter types and return types of m′ to model
the flow of objects between SE and Sm′ .

We have observed that the above scheme is in cer-
tain cases unnecessarily conservative, because objects
passed to a library method do not always pollute the
global set SE. Based on these observations, our imple-
mentation incorporates two refinements to the above
scheme:

• For calls to certain methods in the standard li-
braries, we know that propagation to the set
SE is unnecessary, because the objects passed
to the method will not be the receiver of sub-
sequent method calls. The constructor of class
java.lang.Object is a prime example in this cat-
egory. We have identified about 25 heavily-called
library methods for which calls can be ignored.

• A separate set of objects SC can be associ-
ated with an external class C in cases where
the objects passed to methods in C only inter-
act with the other external classes in limited
ways. For example, we can associate a distinct
set with class java.util.Vector. Care has to
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benchmark # classes # methods #fields (reference-typed) # virtual call sites
Hanoi 44 379 232 (107) 285
Ice Browser 76 761 500 (253) 922
mBird 2,050 17,946 6739 (4284) 3,269
Cindy 468 4,449 3075 (1677) 5,085
CindyApplet 468 4,449 3075 (1677) 2,502
eSuite Sheet 588 5,590 4305 (1412) 4,459
eSuite Chart 733 8,302 5448 (2141) 8,074
javaFig 1.43 161 2,108 1526 (971) 3,482
BLOAT 282 2,677 1255 (541) 6,623
JAX 6.3 309 2,754 1252 (579) 3,836
javac 210 1,512 1107 (406) 3,621
Res. System 2,332 21,495  12487 (6334) 23,640

Table 1: Benchmark characteristics.

be taken, because objects may flow from this
class to other external classes (e.g., due to a call
to java.util.Vector.elements()). There are
three other collection classes that we modeled
similarly.

reflection and dynamic loading. Nearly all of our
benchmarks use dynamic loading and reflection. Since
it is impossible for a static analysis to determine which
classes may be accessed using these mechanisms, we
have to manually supply the analysis with informa-
tion about where objects are created. Issues related to
whole-program analysis in the presence of these mech-
anisms are discussed at length in [39].

4. RESULTS
For a range of benchmarks, we have measured five charac-
teristics of the results of MTA, FTA, and XTA, with the
results of RTA as a baseline:

• the number of types available per method,

• the number of reachable methods,

• the number of edges in the call graphs,

• the number monomorphic and polymorphic call sites,
and

• the running times.

Of particular interest is the classification of call sites into
monomorphic and polymorphic ones, and we provide a de-
tailed study of how our algorithms improve on RTA. While
the number of reachable methods decreases little, we have
found significant reductions in the number of edges in the
constructed call graphs for several of the benchmarks. More
importantly, we found a significant increase in the number
of monomorphic call sites when moving from RTA to, espe-
cially, XTA.

4.1 Benchmark characteristics
Table 1 lists the benchmark applications that we used to
evaluate our algorithm, and provides a number of relevant
statistics for each of them. These benchmarks cover a wide
spectrum of programming styles and are publically available
(except for Mockingbird and Reservation System).

Hanoi is an interactive applet version of the well-known
“Towers of Hanoi” problem, and is shipped with Jax. ICE
Browser2 is a simple internet browser. Mockingbird (mBird)
is a proprietary IBM tool for multi-language interoperabil-
ity. It relies on, but uses only limited parts of, several large
class libraries (including Swing, now part of JDK 1.2, and
IBM’s XML parser). Cinderella3 is an interactive geome-
try tool used for education and self-study in schools and
universities. CindyApplet is an applet that allows users to
interactively solve geometry exercises that were created with
Cinderella. It is contained in the same class file archive as
Cinderella. Lotus eSuite Sheet and Lotus eSuite Chart are
interactive spreadsheet and charting applets, which are ex-
amples shipped with Lotus’ eSuite4 productivity suite (De-
vPack 1.5 version). JavaFig5 (version 1.43 (22.02.99)) is a
Java version of the xfig drawing program. BLOAT6 is a
byte-code optimizer developed at Purdue University. Ver-
sion 6.3 of Jax itself was used as a benchmark. javac7 is the
SPEC JVM 98 version Sun’s javac compiler. Our largest
benchmark, Reservation System, is an interactive front-end
for an airline, hotel, and car rental reservation system de-
veloped by an IBM customer, and consists of approximately
325,000 lines of Java source code.

Table 1 shows the number of classes, methods, and fields for
each of the benchmarks. The table also shows the number
of reference-typed fields in the application (i.e., fields whose
type is a reference to a class), which is indicated between
brackets in the “fields” column. Our system creates one

2See www.icesoft.no.
3See www.cinderella.de.
4See www.esuite.lotus.com.
5See tech-www.informatik.uni-hamburg.de/applets/javafig.
6See www.cs.purdue.edu/homes/hosking/pjama.html.
7See www.specbench.org.
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set for each reference-typed field that is accessed from a
reached method. Hence, this number is a bound on the
number of field-sets that are created. Table 1 also shows the
number of virtual call sites in each benchmark. For reasons
we will explain shortly, virtual calls to methods outside the
application are excluded from this statistic.

4.2 Set sizes
Statistics such as the number of reached methods and the
percentage of uniquely resolved method calls are the mea-
sures by which call graph construction algorithms are tradi-
tionally compared. Since such measures all depend on the
number of types available in a method, it is interesting to
examine the average set of types available in each method
as a more “absolute” measure. Table 4.2 shows, for each of
the algorithms we implemented, the total number of types
(instantiated classes), the average number of types available
in each method body, and the latter as a percentage of the
former. In the case of RTA, which uses only one set, the
average number of types per method is is the same as the
total number of types.

Table 2 tells us several interesting things:

• There are only a very few cases where RTA determines
a larger total number of types than the other algo-
rithms.

• Using MTA, an average 57.8% of all types is available
in each method, a roughly two-fold reduction over RTA
(where all types are available in each method). FTA
does much better than MTA and determines that, on
average, only 15.6% of all types are available in each
method. XTA is better still, with 12.3% of the types
being available on average.

While these reductions in average set size are substantial, it
seems that there is still room for improvement. For Reserva-
tion System, we compute that, on average, about 200 types
are available in each method when XTA is used. This num-
ber seems high, considering that the average size of a method
is in the order of 15-20 lines of source code.

4.3 Reached methods
Table 3 shows, for each of the benchmarks, the number of
methods in the call graphs computed by RTA, MTA, FTA,
and XTA. Also shown are the percentage reductions of MTA,
FTA, and XTA relative to RTA.

These statistics do not include abstract methods, which do
not have a body, do not call other methods, and which can-
not be the target of a dynamic dispatch. The rationale for
excluding abstract methods has to do with the following
observation: In cases where a virtual method m is called,
but where m cannot be the target of a dynamic dispatch,
it is possible to remove the m’s body and make m into an
abstract method without affecting program behavior (in
fact, this is one of the optimizations performed by Jax).
Therefore, counting abstract methods as first-class citizens
makes it impossible to distinguish between call graphs that
contain the same set of method headers, but different sets of

method implementations. One could of course provide de-
tailed statistics that include the number of abstract meth-
ods as well as the number of non-abstract methods, but we
do not consider this additional detail to be very worthwhile.

In summary, we find that:

• MTA computes call graphs with 0 to 2.3% fewer method
definitions than RTA (0.6% on average),

• FTA computes call graphs with 0 to 2.7% fewer method
definitions than RTA (1.4% on average), and

• XTA computes call graphs with 0 to 3.0% fewer method
definitions than RTA (1.6% on average).

4.4 Call graph edges
The next measure we study is the number of edges in the
computed call graphs. In determining this number, we count
each direct call site (i.e., a call that does not involve a dy-
namic dispatch) as one, and each virtual call site as the num-
ber of “target” methods that may be invoked by a dynamic
dispatch from that site. Multiple calls to the same method
m within a method body are counted separately (although
our analyses will treat each of these calls similarly).

Since we do not know whether or not classes outside the
application have been instantiated, it is not possible to ac-
curately determine the number of targets of calls to virtual
methods outside the application. Therefore, in performing
these measurements, any calls to methods outside the appli-
cation are ignored.

The results are shown in Table 4. It is clear that several
of the new algorithms do eliminate substantially more edges
than RTA does. The results can be summarized as follows:

• MTA computes call graphs with 0 to 4.7% fewer edges
than RTA (1.6% on average),

• FTA computes call graphs with 0.1% to 26.7% fewer
edges than RTA (6.6% on average), and

• XTA computes call graphs with 0.3% to 29.0% fewer
edges than RTA (7.2% on average).

4.5 Uniquely resolved call sites
One of the key goals in the optimization of object-oriented
programs is to find “monomorphic” virtual call sites from
which only a single method can be invoked. Such call sites
can be transformed into direct calls, and subsequently in-
lined and optimized further.

Table 5 classifies the virtual call sites in each of the bench-
mark applications as “unreached” (i.e., occurring in an un-
reached method), “monomorphic” (i.e, having a single tar-
get), or “polymorphic” (i.e., having multiple targets). Calls
to methods outside the application are ignored again, since
we cannot accurately determine the number of targets in
such cases. We can conclude the following from Table 5:

• The percentage of virtual call sites that is unreached
varies significantly from one benchmark to another.

7



benchmark RTA MTA FTA XTA
 # types # types #types/method (avg) # types #types/method (avg) #types #types/method (avg)

Hanoi 19 19 7.1 37.3% 19 3.8 20.0% 19 2.8 14.8%
Ice Browser 59 59 23.4 39.7% 59 7.1 12.0% 59 4.5 7.7%
mBird 178 178 90.0 50.6% 178 13.3 7.5% 178 11.6 6.5%
Cindy 238 237 153.2 64.6% 237 36.5 15.4% 237 28.3 11.9%
CindyApplet 105 104 64.6 62.1% 104 17.2 16.5% 104 13.9 13.4%
eSuite Sheet 174 174 96.0 55.2% 174 21.1 12.1% 174 13.8 7.9%
eSuite Chart 303 303 224.1 74.0% 303 48.6 16.0% 303 24.0 7.9%
javaFig 1.43 110 110 73.4 66.7% 110 21.2 19.3% 110 17.1 15.5%
BLOAT 209 209 163.8 78.4% 209 44.7 21.4% 209 42.4 20.3%
JAX 6.3 221 221 70.9 32.1% 221 10.0 4.5% 221 8.3 3.8%
javac 171 171 106.4 62.2% 171 39.9 23.3% 171 35.5 20.8%
Res. System 1,174 1174 833.8 71.0% 1172 228.2 19.5% 1172 200.0 17.1%
AVERAGE 57.8% 15.6% 12.3%

Table 2: Average set size per method for RTA, MTA, FTA, and XTA on each of the benchmarks.

benchmark RTA MTA FTA XTA (RTA-MTA)/RTA (RTA-FTA)/RTA (RTA-XTA)/RTA
Hanoi 183 179 178 178 2.2% 2.7% 2.7%
Ice Browser 644 644 643 643 0.0% 0.2% 0.2%
mBird 1,862 1,855 1,825 1,824 0.4% 2.0% 2.0%
Cindy 2,437 2,412 2,404 2,403 1.0% 1.4% 1.4%
CindyApplet 1,237 1,209 1,203 1,202 2.3% 2.7% 2.8%
eSuite Sheet 2,414 2,400 2,385 2,367 0.6% 1.2% 1.9%
eSuite Chart 4,428 4,419 4,313 4,296 0.2% 2.6% 3.0%
javaFig 1.43 1,441 1,435 1,413 1,411 0.4% 1.9% 2.1%
BLOAT 2,143 2,142 2,120 2,091 0.0% 1.1% 2.4%
JAX 6.3 1,900 1,894 1,894 1,892 0.3% 0.3% 0.4%
javac 1,366 1,366 1,366 1,366 0.0% 0.0% 0.0%
Res. System 11,232 11,227 11,204 11,201 0.0% 0.2% 0.3%
AVERAGE 0.6% 1.4% 1.6%

Table 3: Number of methods in the call graphs computed by RTA, MTA, FTA, and XTA on each of the benchmarks.

benchmark RTA MTA FTA XTA (RTA-MTA)/RTA (RTA-FTA)/RTA (RTA-XTA)/RTA
Hanoi 400 386 382 379 3.5% 4.5% 5.3%
Ice Browser 1,594 1,594 1,593 1,588 0.0% 0.1% 0.4%
mBird 8,061 8,036 7,772 7,760 0.3% 3.6% 3.7%
Cindy 15,457 14,729 11,331 10,967 4.7% 26.7% 29.0%
CindyApplet 5,223 4,990 4,399 4,347 4.5% 15.8% 16.8%
eSuite Sheet 7,171 7,149 7,093 7,071 0.3% 1.1% 1.4%
eSuite Chart 14,669 14,648 13,857 13,771 0.1% 5.5% 6.1%
javaFig 1.43 5,128 5,064 4,963 4,961 1.2% 3.2% 3.3%
BLOAT 19,384 18,772 16,704 16,672 3.2% 13.8% 14.0%
JAX 6.3 7,053 7,018 6,904 6,895 0.5% 2.1% 2.2%
javac 13,154 13,154 13,115 13,113 0.0% 0.3% 0.3%
Res. System 46,130 45,944 44,792 44,412 0.4% 2.9% 3.7%
AVERAGE 1.6% 6.6% 7.2%

Table 4: Number of edges in the call graphs computed by RTA, MTA, FTA, and XTA on each of the benchmarks.
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benchmark RTA  MTA  FTA XTA  
 unreached mono poly unreached mono poly unreached mono poly unreached mono poly
Hanoi 34.0% 61.6% 4.4% 34.0% 62.3% 3.7% 34.0% 62.7% 3.3% 34.0% 62.7% 3.3%
Ice Browser 4.0% 91.4% 4.7% 4.0% 91.4% 4.7% 4.0% 91.4% 4.7% 4.0% 91.6% 4.5%
mBird 14.2% 73.4% 12.3% 14.2% 73.5% 12.2% 17.4% 70.8% 11.8% 17.4% 70.9% 11.7%
Cindy 49.3% 45.0% 5.7% 49.5% 45.0% 5.5% 49.4% 45.2% 5.4% 49.4% 45.5% 5.0%
CindyApplet 72.0% 24.6% 3.4% 72.1% 24.6% 3.3% 72.3% 24.4% 3.3% 72.3% 24.5% 3.2%
eSuite Sheet 28.1% 68.4% 3.5% 28.1% 68.4% 3.5% 28.1% 69.1% 2.8% 28.2% 69.1% 2.8%
eSuite Chart 13.3% 76.6% 10.1% 13.3% 76.6% 10.1% 15.7% 75.7% 8.7% 15.7% 76.0% 8.3%
javaFig 1.43 9.1% 87.1% 3.9% 9.1% 87.4% 3.6% 9.7% 87.2% 3.1% 9.7% 87.2% 3.1%
BLOAT 6.6% 82.4% 11.1% 6.6% 82.4% 11.1% 6.7% 82.5% 10.8% 7.0% 82.2% 10.8%
JAX 6.3 18.7% 75.9% 5.4% 18.9% 75.7% 5.4% 18.9% 76.6% 4.5% 18.9% 76.8% 4.3%
javac 3.0% 77.6% 19.4% 3.0% 77.6% 19.4% 3.0% 77.6% 19.4% 3.0% 77.7% 19.3%
Res. System 18.1% 72.0% 9.9% 18.1% 72.2% 9.7% 18.2% 73.1% 8.7% 18.2% 74.0% 7.9%
AVERAGE 7.8% 7.7% 7.2% 7.0%

Table 5: Classification of virtual call sites according to the RTA, MTA, FTA, and XTA algorithms, for each of the

benchmarks.

For example, only 3.0% of the virtual call sites in javac

are unreached, whereas 72.0% of the virtual call sites
in CindyApplet are unreached.

• Restricting our attention to reached virtual call sites,
we find that all of the algorithms classify a vast ma-
jority of the call sites as monomorphic. Specifically,
we find that:

– RTA classifies between 3.4% and 19.4% of all call
sites as polymorphic (7.8% on average).

– MTA classifies between 3.3% and 19.4% of all call
sites as polymorphic (7.7% on average).

– FTA classifies between 2.8% and 19.4% of all call
sites as polymorphic (7.2% on average).

– XTA classifies between 2.8% and 19.3% of all call
sites as polymorphic (7.0% on average).

In summary, we can conclude that RTA does a very good
job in classifying virtual call sites as monomorphic. For
the benchmarks we study in this paper, only 7.8% of all
virtual call sites are classified as polymorphic (on average),
which leaves little room for improvement. XTA classifies an
average of 7.0% of all virtual call sites as polymorphic.

4.6 Detailed comparison
Table 6 shows a detailed comparison of the call graphs con-
structed by RTA and MTA/FTA/XTA, for each of the bench-
marks. Each call site in the RTA call graph is classified as
one of the following:

• mono-to-unreached: virtual call sites that were re-
solved to a single target method in the RTA call graph,
and that became unreached in the MTA/FTA/XTA
call graphs (due to the fact that the method contain-
ing the call site in question became unreachable).

• mono-to-mono: virtual call sites that were resolved
to a single target method in both the RTA and the
MTA/FTA/XTA call graphs.

• poly-to-unreached: virtual call sites that were re-
solved to more than 1 target in the RTA call graph,

and that became unreached in the MTA/FTA/XTA
call graphs.

• poly-to-mono: virtual call sites that were resolved
to more than 1 target in the RTA call graph, but to a
unique target in the MTA/FTA/XTA call graphs.

• poly-to-poly: virtual call sites that were resolved
to more than 1 target in both the RTA and the
MTA/FTA/XTA call graphs.

To determine how much more accurate the MTA/FTA/XTA
algorithms are when compared to RTA in relative terms, we
can observe the following:

• Any call sites determined to be unreachable by
MTA/FTA/XTA have no impact on an application’s
performance. After all, they are never executed.

• Any call sites determined to be monomorphic by RTA
will not be improved by a better algorithm (because
they either stay monomorphic, or they become un-
reached).

Hence, what remains are the poly-to-mono and the poly-

to-poly categories. The ratio between these categories re-
flects the relative improvement of MTA/FTA/XTA over RTA.

As an example, consider Reservation System, our largest
benchmark. This application contains a total of 23,640 vir-
tual call sites. If we subtract (i) all call sites that are de-
termined to be monomorphic by RTA, and (ii) all call sites
that are determined to be unreachable by XTA, we are left
with 2,824 call sites that are determined to be polymorphic
by RTA. XTA determines that 569 of these call sites are, in
fact, monomorphic. Hence, XTA is capable of devirtualizing
569/2,824 = 20.1% of the call sites deemed polymorphic by
RTA. If we apply this line of reasoning to Table 6, we find
that:

• MTA finds a single target for up to 15.8% of the call
sites deemed polymorphic by RTA (2.9% on average).
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benchmark mono->unreached mono->mono poly->unreached poly->mono poly->poly
Hanoi 0 (MTA) 266 (MTA) 0 (MTA) 3 (MTA) 16 (MTA)

0 (FTA) 266 (FTA) 0 (FTA) 5 (FTA) 14 (FTA)
0 (XTA) 266 (XTA) 0 (XTA) 5 (XTA) 14 (XTA)

Ice Browser 0 (MTA) 877 (MTA) 0 (MTA) 0 (MTA) 45 (MTA)
1 (FTA) 876 (FTA) 0 (FTA) 0 (FTA) 45 (FTA)
1 (XTA) 876 (XTA) 0 (XTA) 2 (XTA) 43 (XTA)

mBird 0 (MTA) 2,807 (MTA) 0 (MTA) 4 (MTA) 458 (MTA)
141 (FTA) 2,666 (FTA) 8 (FTA) 12 (FTA) 442 (FTA)
141 (XTA) 2,666 (XTA) 8 (XTA) 16 (XTA) 438 (XTA)

Cindy 8 (MTA) 4,510 (MTA) 0 (MTA) 9 (MTA) 548 (MTA)
11 (FTA) 4,507 (FTA) 0 (FTA) 24 (FTA) 543 (FTA)
14 (XTA) 4,504 (XTA) 0 (XTA) 52 (XTA) 515 (XTA)

CindyApplet 8 (MTA) 2,185 (MTA) 3 (MTA) 12 (MTA) 294 (MTA)
21 (FTA) 2,172 (FTA) 3 (FTA) 3 (FTA) 303 (FTA)
25 (XTA) 2,168 (XTA) 3 (XTA) 14 (XTA) 292 (XTA)

eSuite Sheet 1 (MTA) 4,272 (MTA) 2 (MTA) 0 (MTA) 184 (MTA)
1 (FTA) 4,272 (FTA) 2 (FTA) 45 (FTA) 139 (FTA)
2 (XTA) 4,271 (XTA) 2 (XTA) 45 (XTA) 139 (XTA)

eSuite Chart 2 (MTA) 7,186 (MTA) 2 (MTA) 1 (MTA) 883 (MTA)
209 (FTA) 6,979 (FTA) 32 (FTA) 100 (FTA) 754 (FTA)
217 (XTA) 6,971 (XTA) 32 (XTA) 135 (XTA) 719 (XTA)

javaFig 1.43 1 (MTA) 3,333 (MTA) 0 (MTA) 12 (MTA) 136 (MTA)
23 (FTA) 3,311 (FTA) 2 (FTA) 26 (FTA) 120 (FTA)
25 (XTA) 3,309 (XTA) 2 (XTA) 26 (XTA) 120 (XTA)

BLOAT 0 (MTA) 5,838 (MTA) 0 (MTA) 2 (MTA) 783 (MTA)
26 (FTA) 5,812 (FTA) 0 (FTA) 20 (FTA) 765 (FTA)
58 (XTA) 5,780 (XTA) 0 (XTA) 20 (XTA) 765 (XTA)

JAX 6.3 11 (MTA) 3,571 (MTA) 0 (MTA) 2 (MTA) 252 (MTA)
11 (FTA) 3,571 (FTA) 0 (FTA) 46 (FTA) 208 (FTA)
11 (XTA) 3,571 (XTA) 0 (XTA) 55 (XTA) 199 (XTA)

javac 0 (MTA) 2,898 (MTA) 0 (MTA) 0 (MTA) 723 (MTA)
0 (FTA) 2,898 (FTA) 0 (FTA) 0 (FTA) 723 (FTA)
0 (XTA) 2,898 (XTA) 0 (XTA) 2 (XTA) 721 (XTA)

Res. System 4 (MTA) 20,797 (MTA) 2 (MTA) 48 (MTA) 2,789 (MTA)
22 (FTA) 20,779 (FTA) 14 (FTA) 324 (FTA) 2,501 (FTA)
23 (XTA) 20,778 (XTA) 15 (XTA) 569 (XTA) 2,255 (XTA)

Table 6: Detailed comparison of the call graphs constructed by RTA and by MTA/FTA/XTA for each of the

benchmarks.

benchmark RTA MTA FTA XTA MTA/RTA FTA/RTA XTA/RTA
Hanoi 0.2 1.1 1.0 1.2 5.5 5.0 6.0
Ice Browser 0.4 1.7 2.4 2.1 4.3 6.0 5.3
mBird 1.1 4.8 5.2 5.8 4.4 4.7 5.3
Cindy 2.0 10.8 8.7 9.3 5.4 4.4 4.7
CindyApplet 0.7 3.0 2.4 2.6 4.3 3.4 3.7
eSuite Sheet 1.5 5.4 6.4 6.9 3.6 4.3 4.6
eSuite Chart 7.0 33.0 24.3 19.9 4.7 3.5 2.8
javaFig 1.43 0.8 3.4 4.5 4.9 4.3 5.6 6.1
BLOAT 1.8 13.1 7.9 8.7 7.3 4.4 4.8
JAX 6.3 1.2 3.4 3.2 3.5 2.8 2.7 2.9
javac 1.2 12.1 8.9 10.0 10.1 7.4 8.3
Res. System 44.5 329.4 309.1 250.2 7.4 6.9 5.6
AVERAGE 5.3 4.9 5.0

Table 7: Running times (in seconds) of the RTA, XTA, and YTA algorithms on each of the benchmarks.
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• FTA finds a single target for up to 26.3% of the call
sites deemed polymorphic by RTA (9.9% on average),
and

• XTA finds a single target for up to 26.3% of the call
sites deemed polymorphic by RTA (12.5% on average).

4.7 Running times
Table 7 shows the running time for the RTA, MTA, FTA,
and XTA algorithms on each of the benchmarks8. In sum-
mary, we found that the XTA algorithm is up to 8.3 times
slower than RTA. The correlation between the slowdown
factor and program size appears to be weak: XTA is only
5.0 times slower than RTA on Reservation System. Based
on our experiences we believe that, on a large machine, our
algorithms should have no problems with million-line pro-
grams.

Surprisingly, the MTA and FTA algorithms were in sev-
eral instances somewhat slower than XTA. Due to time con-
straints, we have not been able to analyze the source of these
slowdowns. A possible explanation is that the increased
number of types available in a method results in additional
work in resolving the call sites within that method. How-
ever, it seems unlikely that this would negate all the benefits
from a decreased number of propagations between sets. We
would expect an efficient implementation of MTA/FTA (e.g,
using techniques by Fähndrich et al [13]) to be significantly
more efficient than XTA.

4.8 Assessment
Our experiments have demonstrated that it is feasible to
construct propagation-based call graph construction algo-
rithms that use more than a single set of objects to approx-
imate the run-time values of expressions. Regarding the
precision of these algorithms, we have observed that:

• The algorithms are slightly more accurate than RTA
in terms of the number of reached methods.

• In several cases, the algorithms are significantly more
accurate than RTA in terms of the number of edges
between the methods in the call graph.

• More importantly, the reduction in the number of edges
is to a significant extent derived from call sites that are
classified as polymorphic by RTA, but as monomorphic
call sites by our new algorithms.

With respect to the number of sets one should use, we con-
clude that:

• Using a distinct set for each method in the program is
useful, because it improves accuracy.

• Using a unified set to represent the fields in a class
does not lead to a great loss of accuracy.

8Measurements taken on an IBM ThinkPad 600E PC with a
300Mhz processor and 288MB of main memory. We used the
Sun JDK 1.1.8 VM with the just-in-time compiler developed
at the IBM Tokyo Research Laboratory [22]. None of the
benchmarks required more than 200MB of heap space.

In light of the improved results of XTA over FTA in some
cases, we consider the XTA algorithm the best choice. If
heap space is at a premium, FTA offers reduced space con-
sumption in exchange for a slight loss of precision. MTA
seems a poor choice since it computes call graphs that have
roughly the same precision as those computed by RTA, but
it is more complex to implement. Although we do not have
data for CTA, we know it is less accurate than MTA, and
the same arguments can be made to argue why it is not a
very good choice.

5. RELATED WORK
5.1 Propagation-based algorithms
The idea of doing a propagation-based program analysis
with one set variable for each expression is well known.
This so-called monovariant style of analysis can be done
in O(n3) time where n is the number of expressions. When
the goal is to construct a call graph approximation in object-
oriented or functional languages, then that style of analysis
is known as 0-CFA [33], and when the goal is to do points-
to analysis for C programs, then that style of analysis is
often referred to as “Andersen’s analysis” [3, 31]. 0-CFA
has been implemented for a variety of languages, includ-
ing dynamically-typed object-oriented languages [29, 28, 1],
functional languages [33, 19], and statically-typed object-
oriented languages, including Java [11, 38, 21]. The expe-
rience has been that the effectiveness of the approaches is
language-dependent, and perhaps even programming-style
dependent.

The idea of polyvariance is to associate more than one set
variable with each expression, and thereby obtain better pre-
cision for each call site. Polyvariant analysis was pioneered
by Sharir and Pnueli [32], and Jones and Muchnick [25]. In
the 1990s the study of polyvariant analysis has been inten-
sive. Well known are the k-CFA algorithms of Shivers [33],
the poly-k-CFA of Jagannathan and Weeks [24], and the
cartesian product algorithm of Agesen [1, 2]. A particularly
simple polyvariant analysis was presented by Schmidt [30].
Frameworks for defining polyvariant analyses have been pre-
sented by Stefanescu and Zhou [36], Jagannathan and Weeks
[23], and Nielson and Nielson [26]. Successful applications
of polyvariant analysis include the optimizing compiler of
Chambers et al [17], and of Hendren et al [12], and the
partial evaluator of Consel [8]. As far as we know, these
polyvariant approaches have not been tried on programs of
300,000+ lines of code.

5.2 Algorithms not based on propagation
Calder and Grunwald [7] investigated a particularly simple
approach to inlining based on the unique name measure,
that is, inlining in cases where there statically is a unique
target for a given call site.

A variation of 0-CFA is the unification-based approach, also
known as the equality-based approach, pioneered for call
graph construction by [20], and later adapted to points-to
analysis for C by Steensgaard [35]. A comparison of An-
dersen’s analysis and Steensgaard’s analysis has been pre-
sented by Shapiro and Horwitz [31]. The unification-based
approach is cheaper and less precise than the 0-CFA-style
approach.
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A broader comparison was given by Foster, Fähndrich,
and Aiken [15]; they compared both polymorphic ver-
sus monomorphic and equality-based versus inclusion-based
points-to analysis. Their main conclusion is that the
monomorphic inclusion-based algorithm is a good choice be-
cause 1) it usually beats the polymorphic equality-based
algorithm, 2) it is not much worse than the polymorphic
inclusion-based algorithm, and 3) it is simple to implement
because it avoids the complications of polymorphism.

An experimental comparison of RTA and a unification-based
approach to call graph construction was carried out by De-
Fouw, Grove, and Chambers [11]. Their paper presents a
family of algorithms that blend propagation and unification,
thereby in effect dynamically determining which set vari-
ables to unify based on how propagation proceeds. Members
of the family include RTA, 0-CFA, and a number of algo-
rithms with cost and precision in between. Our algorithms,
by contrast, uses static criteria to decide which set variables
are to be merged, and then performs the usual propagations
between them. This is potentially a poorer choice, both for
accuracy and analysis time, than the approach in [11]. Our
static criterion for merging set variables stems from our de-
sire to keep the algorithm simple, in particular by avoiding
analysis of the run-time stack.

Ashley [4] also presented an algorithm that blends unifica-
tion and propagation, in the setting of Scheme.

6. FUTURE WORK
A comparison of our algorithms, 0-CFA, and the variations
presented by Sundaresan et al. [38] and Ishizaki et al. [21]
seems to require a framework in which a program transfor-
mation names all stack locations. This would be a signifi-
cant extension to our framework so it may be easier to do a
comparison in the settings of [38, 21]. Questions that could
be addressed by such a comparison include: 1) does 0-CFA
use significantly more time and space than our algorithms
for large benchmarks? 2) is the potential extra precision of
0-CFA worth the increased cost? and 3) when used in a
compiler for devirtualization of monomorphic calls, does 0-
CFA give significantly better speedups than our algorithms?
Answers may well shed more light on which algorithm to
choose. Perhaps 0-CFA needs to be a fair bit better than
the other algorithms before it becomes tempting to imple-
ment the program transformation that enables 0-CFA for
Java bytecodes.

While adding Hindley-Milner polymorphism seems not to
be worthwhile [15], we have conducted some initial exper-
iments with the use of data-polymorphism. The idea is
well known: treat each distinct allocation site as a separate
class, and keep the fields in these artificial classes distinct
[27, 18]. Similarly, distinct sets may be used when meth-
ods are invoked on objects of the same type but allocated
at different sites. Data-polymorphism has the potential of
significantly increasing the cost (more elements have to be
propagated, and the number of distinct sets may increase
as well). However, accuracy may improve as well because
unrelated instantiations of the same type are kept separate,
thereby leading to a more precise analysis of their fields.
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