
SIGPLAN Notices 1970 July

Control Flow Analysis

Frances E. A l len
IBM CORPORATION

INTRODUCTION

Any static, global analysis of the expression and data relation-
ships in a program requires a knowledge of the control flow of the
program. Since one of the primary reasons for doing such a global
analysis in a compiler is to produce optimized programs, control flow
analysis has been embedded in many compilers and has been described
in several papers. An early paper by Prosser [5] described the use
of Boolean matrices (or, more particularly, connectivity matrices) in
flow analysis. The use of "dominance" relationships in flow analysis
was first introduced by Prosser and much expanded by Lowry and
Medlock [6]. References [6,8,9] describe compilers which use various
forms of control flow analysis for optimization. Some recent develop-
ments in the area are reported in [4] and in [7].

The underlying motivation in all the different types of control
flow analysis is the need to codify the flow relationships in the
program. The codification may be in connectivity matrices, in
predecessor-successor tables, in dominance lists, etc. Whatever the
form, the purpose is to facilitate determining what the flow relation-
ships are; in other words to facilitate answering such questions as:
is this an inner loop?, if an expression is removed from the loop
where can it be correctly and profitably placed?, which variable
definitions can affect this use?

In this paper the basic control flow relationships are expressed
in a directed graph. Various graph constructs are then found and
shown to codify interesting global relationships.

The first section of the paper, "Basic Concepts," is primarily
a catalog of relevant information about directed graphs; similar
information can be found in any introductory material on the subject.
(Reference [2], for example, covers this material.) The use of
directed graphs to express control flow relationships is also given
in the first section.

In the second section of the paper, "Dominance Relationships"
are defined in terms of the basic concepts introduced in the first
section. Most of the concepts in this section have, as previously

Allen. CONTROL FLOW ANALYSIS

- 1 --

SIGPLAN Notices 1970 July

mentioned, appeared in the literature before.[l,5,6]
The third section, "Intervals," discusses a graph construct

defined by Dr. John Cocke and described in [3] and [4]. In this
section intervals are defined, a procedure is given for their
construction, and their properties are given in a series of
assertions. Also discussed are procedures for finding other graph
constructs in terms of the interval constructs.

The fourth section, "Partitioning Graphs by Intervals," describes
a hierarchial sequence of graph partitions by means of intervals.

The last section before the summary gives a procedure and an
example of"The Use of the Interval Construct in Global Analysis."

BASIC CONCEPTS

A directed graph, G, can be denoted by G = (B,E) where B is the
set of nodes (blocks) (bl,b2,...,b n} in the graph and E is the set of
directed edges ((bi,bj) , (bk,b~),...). Each directed edge is repre-

sented by an ordered pair (bi,b j) of nodes (not necessarily distinct)

which indicate that a directed edge goes from node b. to node b..

Thus, there exists a successor function F which maps G into G such

that F~(b i) = {bj I (bi,b j) e E). We call this set the set of

immediate successors of a node. It may be empty. The inverse of

successor function F~ I gives the immediate predecessors of a node: the

FGi(bj) = {b i I (bi,b j) c E}. It too may be empty.

A directed graph is connected if any node in the graph can be
obtained (reached) from any other node by successive applications of
i

FG I. We wll assume throughout this paper that the graphs F G and/or

being discussed are both directed and connected.
Before introducing more graph concepts, the relevance of graphs

to program control flow is introduced.
A basic block is a linear sequence of program instructions having

one entry point (the first instruction executed) and one exit point
(the last instruction executed). It may of course have many predes-
sors and many successors and may even be its own successor. Program
entry blocks might not have predecessors that are in the program;
program terminating blocks never have successors in the program.

A control flow graph is a directed graph in which the nodes repre-
sent basic blocks and the edges represent control flow paths. Every-
thing that is said about directed graphs in this paper holds for
control flow graphs.

A subgraph of a directed graph, G = (B,E), is a directed graph
G' (B',E') in which B' C = G. = B, E' C E, G r~ G' = G' and G ~J G'
Furthermore, the successor function F~, defined for G' must'~tay
within" G'; that is for

!

b B, i b' {b] E'}
• , FG,(i) : l (b , J

Consider the following directed graph, G, in which the nodes have
been arbitrarily named by numbering.

Allen. CONTROL FLOW ANALYSIS

-- 2 --

SIGPLAN Notices 1970 July

Fig. I

One of the many subgraphs in G is
G' = (B',E') in which B' = {2,3,4,5}
and E' = {(2,3),(2,4),(3,5)(4,5)(5,2)}.
G' can be depicted by:

/

A path in a directed graph is a
directed subgraph, P, of ordered nodes
and edges obtained by successive appli-
cations of the successor function. It is

expressed as a sequence of nodes (bl,b2,...,b n) where bi+ I e r~(bi).

The edges are implied: (b.,b.+~) ~ E. The nodes and the implied edges
• i i

are not necessarily unique. A path in G, the graph in Fig. I, is
(2,3,5,3,5,2,4). It should be observed that the examples show how
some of the developed notation is to be used: the nodes of the graph
are arbitrarily but uniquely named and b stands for any such name.

A node, q, is said to be a successor of a node, p, if there

,b n = exists some path P = (bl,...) for which b I = p and b n q. In the

same situation p is said to be a predecessor of q. It should be
noted that a node can be both a predecessor and a successor of
another node: P1 = (P,''',q) and P2 = (q,''',P)"

A closed path or circuit is a path in which b n = b I. The circuit
is a simple circuit if, with the exception of bn, the nodes in the
circuit are distinct; otherwise it is a composite circuit. Consider
the graph in Fig. i: it has the following simple circuits: (3,5,3),
(5,3,5), (2,3,5,2), (3,5,2,3), (5,2,3,5), (2,4,5,2), (4,5,2,4),
(5,2,4,5), (?,7). One of the composite circuits is (2,3,5,3,5,2).
Since it will generally be uninteresting to consider circuits contain-
ing the same nodes and edges but in a different order, we will
generally select a first node and describe the circuit relative to
that node.

The length of a path is the number of edges in the sequence.
More formally, a distance function 6 is defined such that for any
path P = (bl,b2,...,bn) , ~(P) = n-l. Since the shortest path ~min
between two points p and q is often of interest it will now be
defined: ~min(P,q) = MIN(~(PI),~(P2)...) for all Pi = (P,''',q)" The
shortest path then is the Pi for which ~(Pi) = 6min(P,q)-

A strongly Connected region of a directed graph is a directed
subgraph in which there is a path from any node in the subgraph to
any other node. It immediately follows from this definition that
every node lies on at least one closed path, and is, therefore, its
own predecessor and its own successor. Closed paths (circuits) are,
therefore, a special kind of strongly connected region -- one which
has a strict ordering. A strongly connected region R of a directed

Allen. CONTROL FLOW ANALYSIS

- 3 -

SIGPLAN Notices 1970 July

graph G is maximal if there does not exist another strongly connected
region, R', in G for which R ~ R' ~ ~. A properly nested set of
strongly connected regions is a partially ordered set d = {Ri,R2...Rn}
such that for i < j either R i~Rj = 0 or Ri, ~R j = R i i.e., either R i
and Rj are disjoint or Rj covers R i.

The use of a nested-set of strongly connected regions in control
flow analysis for optimization was first suggested in [I]. In that
approach to control flow analysis, a set, D, of disjoint sets of
nested strongly connection regions is found:

! T T

D = {{Ri,R2,...,R n} , {Ri,R2,...,Rn}, ... }

or, for the sake of brevity, D = {d,d',...}. Each R n is a maximal,
strongly connected region which thereby assures that sets of nested
strongly connected regions are disjoint. We will now consider some
of the properties of the above construct in a directed graph, G:

I. D does not necessarily cover G. If there are nodes in G
which are not in any strongly connected region then they will not
be in D.

2. Each d e D is partially ordered.
3. D is unordered.
4. If a node, p, is an element of a strongly connected region

it is in one and only one d. For p e d where d = {Ri,R2,...,R n}
then p e R n and may be an element of several nested R i.

As an example consider the graph in Figure l:
D = {{(3,5),(2,3,4,5)},{7}}. Since much of the control flow analysis
involves knowni~g relationships between nodes in the control flow
graph, the construct, D, codifies several useful relationships.
However it has several limitations, the more serious of which are
that it does not establish an ordering on the total graph and that,
by the very nature of a general strongly connected region, there is
no ordering relationship on the nodes within the region other than
that given by the immediate successor-predecessor relationships.

DOMINANCE RELATIONSHIPS

Several interesting and useful constructs can be established
from "back dominance" and "forward dominance" relationships. Before
defining these relationships two special kinds of nodes must be
defined. A node in a directed graph, G, which has no successors in
G is called~ a terminal or exit node. Thus, letting x denote an exit
node, r~(x) = @. This definition suffices for control flow graphs
but, slnce a program entry point may also be the first node in a
closed path and thereby have a predecessor, an analogous definition
for entry nodes does not suffice. An entry node, e, is a node in the
program control flow graph, C, if it contains a program entry point.
Several of the constructs about to be described depend upon having
only one such node in the control flow graph. An arbitrary initial
entry node e 0 is introduced into the control flow graph as an
immediate predecessor of all entry nodes:

I rc(e 0) = {e i I e i is an entry node} and Fcl(e0) = @.

Allen. CONTROL FLOW ANALYSIS

- 4 -

SIGPLAN Notices 1970 July

Since e 0 essentially represents the set of all external program
predecessors of the entry points, the control flow graph has not
been invalidated. Having modified the control flow graph to contain
e0, it is possible to view the control flow graph as a directed graph
with one initial node where an initial node is a node with no prede-
cessors.

Any reference to a graph in the remainder of this paper will be
to a connected, directed graph with a single entry node, e0, and a set
of exit nodes X = {Xl,X2,...). Having established entry and exit
nodes, we can now define the dominance relationships which exist in a
directed graph and are of interest in control flow analysis. (For
information of their role in optimization, the reader should look at
reference [6].)

A node, bi, is said to back dominate or predominate a node, bk,
if b i is on every path from e 0 to b k~ Let yD = {PIP = (~___'of'''~}" •
Then the set of back dominator~ BD(bk} of b k consists of
blocks, other than b k itself, which are on all paths from e 0 to b k-
In other words

BD(b k) = {b i I b i # b k and b i ~ n ~}.

The immediate back dominator of node b is the back dominator which
is "closest" to bk; that is for all bikand bj in BD(bk) , b i is the
node for which

6min(bi,bk) = Minimum (~min(bj,bk), 6min(bj,bk),...) .

It can now be shown that there is one and only one immediate
there were two back dominator of a node b # e 0. For suppose that(b['bk) l

such nodes: b i and b i. T~en ~min(bi'bk) = ~min " But

this can only occur if b i and b k are on separate paths or if b i
Since a back dominator must be on every path, b i must equal b~. = bi"
Furthermore there must be at least one back dominator, e0, slnce
e 0 is on every P c jD .

Another interesting observation which can be made is that the
set of back dominators BD(b k) of node k are strictly ordered by the
minimum distance function ~min. This follows from the previous
paragraph since, if b i is the immediate back dominator of b k and
if b i ~ e0, b i must have one and only one immediate back dominator.

The set of back dominators of node b k can be represented by

BD(b k) = (bl,b2,b3,...,bj) where b I = e 0 ,

b. is the immediate back dominator of b..~ and b is the back domi-
1 Itl i

nator of all b~, i < j < k.
A node biJis said [o forward dominate or post dominate a node

b k if b i is on every path from b,. to all exit nodes. By introducing
a node x 0 into the graph such that F~l(x0) = X, the set of exit nodes
defined earlier, the set of forward dominance relationships analogous
to the back dominance relationships can be developed. Because the
development so closely parallels that for back dominance it will not
be given. Suffice it to say that the set of forward dominators,
FD(bk) , of node b k can be expressed by

Allen. CONTROL FLOW ANALYSIS

- 5 -

SIGPLAN Notices 1970 July

FD(b k) = (bl,b2,... bj) where b. = x b I is the immediate
' j 0' forward dominator of b k

and for all i, i < i < j, b. is the immediate forward dominator of
-- 1

bi_ I •
An articulation node in a graph is a node which lies on every

entry-exit path. Thus for any graph with a single entry point, e0,
the forward dominators of e 0 are, together with e0, the articulation
nodes of the graph.

INTERVALS

Given a node h, an interval l(h) is the maximal, single entry
subgraph for which h is the entry node and in which all closed paths
contain h. The unique interval node h is called the interval head or
simply the header node. An interval can be expressed in terms of the
nodes in it:

l(h) : (bl,b2,...,bn) ; any edge (bi,b j) for b i and bj c l(h)

is implicitly in I(h).
By selecting the proper set of header nodes, a graph may be

partitioned into a unique set of intervals. (A partition of a graph
G is a set of subgraphs gl,g2,...,g n such that gi ~ G, ~ gi = G and

for all i ~ j, g.~ g : ~. Thus a graph partition covers the
original graph w ~i~ ~Jset of disjoint subgraphs.) A procedure for
partitioning a graph, G, into a unique set of intervals is now given:

Procedure A.
I. Establish a list H for header nodes and initialize it to e 0.
2. For h E H find l(h) as follows.
2.1 Put h in l(h) as the first element of l(h)
2.2 For any b ~ G for which r~l(b) rd l(h) add b to l(h).

Thus a node is added to an interval if and only if all of its
immediate predecessors are already in the interval.

2.3 Repeat 2.2 until no more nodes can be added to l(h).
3.1 Add to H all nodes in G which are not already in H and which

are not in l(h) but which have immediate predecessors in l(h).
Therefore a node is added to H the first time any (but not all) of its
immediate predecessors are members of an interval.

3.2 Add l(h) to the set of intervals being developed.
4. Select the next unprocessed node in H and repeat steps 2,3,4.

If there are no more unprocessed nodes in H, the procedure terminates.

Before giving an example and before discussing the properties of
the graph partition constructed by the above procedure, a few comments
on the procedure itself may be of interest. In a program written by
the author to implement this procedure, indicators were left on each
node as to whether or not it Was in H, and if not in H, a count was
kept of the number of times it had been looked at during the develop-
ment of the current interval. This latter count was kept because,
once a block is added to the current interval, only its immediate
successors are candidates for addition to the interval. Thus a quick
comparison of the number of actual predecessors against the number of

Allen. CONTROL FLOW ANALYSIS

- 6 -

SIGPLAN Notices 1970 July

times the node is visited as a successor of interval nodes deter-
mined whether or not it could become a member of the current
interval. Using such techniques an edge in the graph will never
be traversed more than once. Thus the execution time for the
procedure is directly proportional to the number of edges in the
graph.

The following example illustrates the partitioning of a graph
into intervals:

Graph Interval s

e0
........ i(2) : 2

/ I(3) = 3,4,5,6

I(7) = 7,8

(the naming of the nodes is,

as usual, arbitrary)

exit

Figure 2

It will now be shown that the procedure given does indeed
produce a set of intervals each of which satisfies the definition for
an interval. It will later be shown that they collectively provide a
unique partition of the graph. Thus we need to show that any l(h) is
maximal, is single entry, and that all closed paths in l(h) contain h.

Assertion I. l(h) has only one possible entry node, h. Suppose
there was another node b ~ l(h), b ~ h, which was also an entry node.
Then b must have at least one immediate predecessor which is not in
l(h). But this is impossible since b became a member of the interval
only when all of its immediate predecessors were already interval
members. Hence there can be only one possible entry node. It should
be further noted that h # e D will have at least one predecessor
outside the interval since oy step 3 in the procedure it became a
header node because it had a predecessor in an interval to which it
did not belong.

Assertion 2. All closed paths in l(h) contain h. Suppose there
is a closed path P = (bl,b2,...,bn,b I) which does not contain h.
By the notationa,l definition established for paths bi_ I is an
immediate predecessor of b i. Hence b i cannot become a member of l(h)
until bi_ I is a member. Also b I cannot become a member until b n does,
and b n cannot become a member u~til bn_ I does, etc. Therefore all
closed paths in l(h) must contain h.

Assertion 3. l(h) is maximal. This follows from step 2.3: nodes
are added to l(h) until no more can be.

Allen. CONTROL FLOW ANALYSIS

7-

SIGPLAN Notices 1970 July

Some properties of intervals which result from the construction
in procedure A are now given.

Assertion 4. The header node of an interval back dominates every
node in the interval. Since by Assertion i, the only possible entry
to an interval is through the header node, the header node must lie in
every path from e 0 to any block in the interval.

A somewhat restricted successor function L~ is now defined for
the interval l(h): a local successor function, L~(b i) is defined for
l(h) such that for b i c l(h) L}(b i) is the set of all immediate
successors of b i which are in the interval but are not the header
node. In other words

L~(b i) = {bj I bj ~ r~(b i) and bj # h} o

I
The local predecessor function is the inverse of L I i.e. is L~ I in
which L~i(h) = ~.

Uslng ~ the local successor function a special type of interval
path can be defined: a forward path is a path F = (bl,b2,...,b n)
where bi+ 1 c L$<b~) It can be note--d that all nodes on all forward
paths from h t~ afiy node in I(h) are also in I(h).

Assertion 5. The nodes in an interval are partially ordered by
the local successor function. Given an interval
I(h) = (bl(=h),b2,b ~ ...,b~) if i < j then either b i is a predecessor
of bj on some forward pathS'or b i and bj do not co-exist on any forward
path. This follows from the fact that,with the exception of h, all
immediate predecessors of a node must be interval members before the
node can become a member.

Assertion 6. The relative ordering of the nodes in a back
dominator list and the nodes in an interval must be the same If b~
is a back dominator of b~ and both are in an interval l(h), clearly
b i must precede bj in th$ interval list because it is impossible to
reach bj without having first reached b i.

Assertion 7. For any interval member b k # h with back dominator
list BD(b k) = (bl(=e0),b2,...,bj). then for b~ = h, b i c BD(b k) and
all blocks b~ following b i on the back domina{or list (i < ~ _< j),
b~ is a member of the interval. A back dominator b~ must be on all
paths from e 0 to b k. Since it follows h on the back dominator list
it must be on all paths and, hence all forward paths, from h to b k.
Therefore it must be an interval member.

Assertion 8. Any strongly connected region in an
interval must contain the interval head• This follows immediately
from the fact that all closed paths in I(h) must contain h. An
interval cannot, therefore, contain disjoint strongly connected
regions•

Assertion 9. If an interval contains a strongly connected
region then there exists a path from every node in the region to
every node in the interval. Since the header node both back
dominates every node in the interval and is in the strongly connected
region, and since there is a path from any node in a strongly
connected region to any other node, there must be a path from every
node in the region to every node in the interval. Unless the entire
interval is strongly connected, it will not be the case that there
exists a path from every node in the interval to every node in the
region.

Allen. CONTROL FLOW ANALYSIS

_

SIGPLAN Notices 1970 July

For example in interval 1(3) in Figure 2, there are paths from
node 4 to every node in the interval.

As a consequence of 9, it should be noted that there can be a
path from bj to b i when b i precedes bj on the interval list. If there
is such a p~th then bj must be in the-strongly coanected region. It
is still true however that there does not exist a forward path in
which bj is a predecessor of b i.

Consider the following interval with header node i and exit
node 6.

i.j ~"

/<

Fisure 3

Assume
i(1) = (1,2,5,3,4,6)

Assume the order in which nodes
have become interval members results
in I(i) = (1,2,5,3,4,6). Clearly there
are paths from 4 to all of its
predecessors in the interval list.

Before making the next assertion,
the meaning of "interval exit node"
needs to be more carefully defined:
an interval exit node is any node in an
interval, l(h), which either has no
successors (i.e. is a terminal node for
the entire graph) or has at least one
immediate successor which is not in
I(h).

Assertion i0. The interval header
is an articulation node for the inter-
val. Since the header node is the only
entry to the interval it must be on

every entry-exit path. An interval header is not necessarily an
articulation node for the total graph.

Assertion ii. All forward dominators of the interval header
which are also interval members are, along with the header, the
articulation nodes for the interval. This assertion can be shown by
exactly the same reasoning that led us to assert that the forward
dominators of e 0 are the articulation nodes, and together with e0, the
only articulation nodes of the total graph.

The articulation nodes of the interval in Figure 3 are i, 4 and 6
since they are on every entry-exit path.

In certain applications a special graph construct called a
"two-terminal subgraph" may be of interest. Defined in terms of
intervals, a two-terminal subgraph is an interval with one exit node.
Since an interval can have only one entry node the motivation for the
term should be apparent. The interval in Figure 3 is an example of a
two-terminal subgraph.

Procedures will now be given for finding the strongly connected
region in an interval, the articulation nodes of the interval, and,
for each node in the interval the list of interval nodes which back
dominate it. These procedures can be embedded in procedure A thereby
generating not only the intervals but their interval relationships in
"one pass" through the edges in the graph.

Up to this point in the paper it has been completely satisfactory
to represent members of a set in terms of a list of the elements in it.
For example l(h) = (bl,b2,...,bn) where b i represents the name of the

Allen. CONTROL FLOW ANALYSIS

- 9 -

SIGPLAN Notices 1970 July

node in position i in the interval. Although we will continue to
use the list form of representation in the procedures to be
described, another form could be introduced which more directly
suggests the relationships involved as well as a possible implemen-
tation approach. A bit vector notation could be used in which, for
a given interval, l(h) = (bl,b2,...,bn) , bit position i represents
node b i. By remembering the correspondence between bit positions
and node names no information is lost. Boolean operations rather
than the set operations shown could then be used. Also the relative
order of the nodes in the interval is automatically kept by the bit
vector positions. Since it would complicate the exposition, the bit
vector form will not be used in describing the procedures.

The next procedure generates a back dominator list, BD(bi) , for
each node b i in the interval. Each back dominator list as generated
is unordered. Since, however, the relative ordering of nodes in the
interval can be used (by Assertion 6) to order the nodes in the back
dominator list, the correct ordering can be determined. By using the
bit vector representation, the ordering is kept automatically. If, in
that representation, a bit is one in the back dominator vector if and
only if the block represented by that position is a back dominator
then the right most one bit in the vector represents the immediate
back dominator.

Procedure B.
This procedure finds the back dominators of each node in an

interval.
i. Assign the interval head a back dominator list of zero.
2. For the next node, bj, in the interval list (or for the

one just ~dded if this procedure is embedded) form
BD(bj) =[~(b i ~ BD(bi)) for all nodes, bi, which are immediate

1

predecessors of bj.
3. Repeat 2 until all nodes in the interval have been

processed.

As an example consider the interval of Figure 3 for which
l(h) = (1,2,5,3,4,6). The procedure generates the following back
dominator list for each node by the operations shown.

Nodes Immediate BD List for
(in order) Predecessors Operation for Each Node

i - (Assignment) 0

2 I I '..~' 0 i

5 2 2 u I 1,2

3 i I L~O i

4 2,3 (2 ;' I) r'~ (3 ~.: i) i

6 4 4 ~./ i 1,4

Example i

In the next procedure, C, the interval articulation nodes are
found by using the back dominators of interval exits. The result of

Allen. CONTROL FLOW ANALYSIS

- i0 -

SIGPLAN Notices 1970 July

procedure C is a list, A, of articulation nodes for the interval.

Procedure C.
The interval articulation nodes are found by this one step

procedure.
i. A = IO (b i ~ BD(bi)) for all b i which are interval exits.

I
Consider the interval of Figure 3 and the back dominator lists

given in Example I. Since node 6 is the only interval exit,
A = 6 ~(1,2) = 1,2,6• If node 5 were also an exit then
A = [5 ~ (1,2)] ~ [6 U (1,2)] and the articulation nodes would be
i and 2.

The next procedure, procedure D, finds all of the local
predecessors Of a node.

Procedure D.
The local predecessors, LP(bi) , for each node, hi, in an interval

are found by:
I. Assign the interval head a local predecessor list of zero:

mP(bl~ = 0.
• For the next node, b., in the interval list

LP(bj) = ~=)(b V LP(b)) for a~l nodes b i which are immediate
i i i

predecessors of b..
3. Repeat step 2 until all nodes in the interval have been

processed•

Considering again the example in Figure 3 the following LP lists
are generated by procedure D.

Nodes Imm. Pred. Operation LP Lists

i - (As signment) 0

2 I I ,~ 0 i

5 2 2 ~I 1,2

3 i I '.." 0 I

4 2,3 (2 U i) ~ (3 ~-' l) 1,2,3

6 4 4 <' (1,2,3) 1,2,3,4

Example 2

The next procedure, E, uses the results of procedure D for the
interval "latching" nodes to find the strongly connected region in
the interval. A latching node is any node in the interval which has
the header node as an immediate successor. An equivalent definition
for a latching node is that it is any node in the interval which is
an immediate predecessor of the interval head. In Figure 3 nodes 4
and 5 are latching nodes. It should be noted that the interval head
itself can be a latching node. From previous assertions it follows that
if the interval does not contain any latching nodes then the
interval does not contain a strongly connected region. The following
procedure then would be invoked only if the interval had at least
one latching node.

Allen. CONTROL FLOW ANALYSIS

- ii -

SIGPLAN Notices 1970 July

Procedure E.
The strongly connected region, SCR, of an interval can be found

by this one step procedure.
I. SCR =k-JCb i_ u LP(bi)) for all b. which are interval latching

nodes, i 1

Using the results of Example 2, we get SCR=[4~(I,2,3)]u[5<~(I,2)].
Therefore the strongly connected region of the interval in Figure 3 is
comprise4 of the nodes (1,2,3,4,5).

Another procedure, E', for finding the strongly connected region
in an interval is to start from the latching nodes and iteratively
mark all immediate predecessors until the header node is reached and
marked. Whenever a marked predecessor is found in this procedure it
is not necessary to continue the marking of its immediate predecessors
since they will already have been marked. This procedure has the
advantage of not requiring that the LP lists be set up and is probably
preferable if the only use of LP lists is to find the strongly
connected region.

A formal description of procedure E' is not given; the above
informal description should adequately suggest such a description.

PARTITIONING GRAPHS BY INTERVALS

Having considered the properties of any given interval, it will
now be shown that the set of intervals ~ = {l(h), l(h), l(h) } I 2 "
generated by procedure A forms, as asserted, a unique partitio~ of
the graph G. Recalling the definition of a partition, we therefore
need to show that ~ covers G and that for any two intervals l(h i)
and l(hj) in ~, l(hi) ~ l(hj) = ~. Furthermore we want to show
that ~# is unique.

Assertion 12. ~# covers G. Suppose there is a b e G which is not
in any l(h) e ~. Since G is a connected graph, b must either be e 0
or have at least one predecessor. But if b = e 0 it is an element
of en, the first interval constructed.

l(l~)b ~ e0, then, since it must have at least one predecessor, by
step 2.2 it must become a member of the interval containing the
predecessor or must, by steps 3 and 4, become an interval head. (In
order to establish that the predecessors must be members of intervals
we can recursively apply the above reasoning until b = e0). Hence
covers G.

Assertion 13. The elements of ~) are disjoint, that is for any
l(h) and l(h'), elements of ~:~, l(h) ~ l(h') = ~.

Assertion 13a. The header nodes must be distinct, that is for
any h and h', h # h' By step 3 in Procedure A a given node can
appear at most once in H and by step 4 a node in H can be processed
(used to head an interval) only once.

Assertion 13b. The'header node of one interval cannot be an
element of another interval. Suppose interval head, h, is an element
of interval l(h'). By 13a, h ~ h' Therefore all immediate prede-
cessors of h must, by step 2.2, also be in l(h'). But for h to have
become an interval head some but not all of its immediate predecessors
must have been members of an interval, say l(h"). We will now show
that h" must also be an element of l(h'). Consider an immediate

Allen. CONTROL FLOW ANALYSIS

- 12 -

SIGPLAN Notices 1970 July

predecessor b of h which is in both intervals l(h') and l(h"), b is
back dominated by both h' and h" and since the back dominators of a
block are strictly ordered either h' back dominates h" or vice versa.
But since h has predecessors which are not in h", h" cannot back
dominate h. We can therefore conclude that h' back dominates h".
By assertions 6 and 7 h" must be an element of l(h'). Proceeding
inductively h must eventually equal h' which by Assertion 13a is
impossible. Hence it is not possible for a header node to be an
element of an interval.

Assertion 13c. The intersection of any two intervals is null.
Suppose there is a b e l(h) ~ l(h'). By assertions 13a and 13b we
know that b is not a header node of any interval including l(h) and
l(h'). But for b to be in the intersection it must be a member of
each interval. Hence all of the immediate predecessors of b must be
in both intervals and, as a consequence, they must also be in the
intersection of the two intervals. Proceeding inductively we must
eventually find an interval header in the intersection which is
impossible by 13a and 13b. The elements of ~ must therefore be
disjoint.

Assertion 14. ~ = {l(h),l(h') ...} is unique. Having shown
that each l(h) is maximal and that elements of <p are disjoint, it
is sufficient to show that the set of header nodes H is unique.
Clearly the first header node, e0, is always in the set of header
nodes. Since l(e0) is maximal the set of nodes which become members
of H after the construction of l(e 0) is unique. Pick any h s H and
construct l(h). Again because intervals are maximal, the set of nodes
in the graph which are immediate successors of nodes in l(h) but are
not themselves in l(h) is unique. (Some of these immediate succes-
sors may however already be in H because they have immediate
predecessors in intervals which were constructed before l(h) and
indeed they may already have been used to construct intervals.) Since
we are able to pick any node in H and, after interval construction,
find a unique set of header nodes, the order of processing H does not
affect the header nodes found. It follows therefore that, after e0,
header nodes can be added to H in any order. By induction we claim
that the header nodes are unique and therefore ~ is unique.

Having described the relationships of the total set of intervals
to the total graph and, prior to that, having shown some of the
inter-relationships of nodes in a given interval, we now want to
enlarge the scope of an interval so that the interrelationships in
larger sets of nodes can be derived.

The intervals described thus far have been formed from the
elemental nodes of the graph (the basic blocks of the control flow
graph). For reasons which will be apparent shortly, we designate
these intervals as the basic or first order intervals and the graph
from which they were derived as the basic or first order graph. Since
we will be deriving higher order graphs and intervals we will use
superscripts to designate the order, e.g. ll(h) ~ ~i.

A second order graph is derived from the first order graph and
intervals by making each first order interval into a node. The
immediate predecessors of such a node in the second order graph are
all the immediate predecessors of the original header node which were

Allen. CONTROL FLOW ANALYSIS

- 13 -

SIGPLAN Notices 1970 July

not members of the interval; the immediate successors of such a
node are all of the immediate, non-interval successors of the
original exit nodes.

Second order intervals are the intervals in the second order
graph. With respect to the second order graph, they have all of
the properties derived for first order intervals. Since the nodes
of the second order intervals are first order intervals we have by
our procedure derived some inter-interval relationships.

Successively higher order graphs can be derived until the n-th
order graph either consists of a single node or is "irreducible".
This latter case will be described after we give an example of a
graph which "reduces" to a single node. In the example only multi-
node intervals are renamed in the derived graph.

i
G

\

G 2 G 3 G 4

• @

Ii(1) -- 1

i(2) -- 2

I(3)=3,4,5,6

1(7)=7,8

~..~2 ~3 ~4

I2(i) = I I3(1)--l,ll I4(12) --

I2(2)--2,9,10

Figure 4

12

A reducible graph is a graph whose n-th order derived graph
is a single node. An irreducible graph is a graph for which there
does not exist an n-th order derived graph consisting of a single
node. This will happen whenever every interval in a graph is
composed of only one node and contains no internal flow paths.

Allen. CONTROL FLOW ANALYSIS

- 14 -

SIGPLAN Notices 1970 July

Examples of irreducible graphs are
A method for "splitting" an irreduc-

) Q ible graph is given in reference [I0]. By
this method an equivalent, reducible graph

~\ ~I is produced. It may be of interest that a
S ~ ~ and !/i ~ - ~ ~ program written by the author to analyze

the control flow of FORTRAN programs found
that over 90% of the control flow graphs

k f were reducible. (The data consisted of
..... 75 "real" programs.)

Assuming graph G I is eventually
reduced to a single node several interest-

..... ing observations can be ~ade.
i. Every node in G ~ is in one and

only one interval ll(h) in ~I which is in turn a node in G 2 and
,~2 hence in one and only one interval 12(h) in ~ , etc.

2. Therefore for a given basic block, a unique, strictly ordered
set of membership in successively higher order intervals exists:
b i c ll(h I) ~ 12(h2) ~ ... c In(hn).

3. Because the nodes in an interval are partially ordered by the
local successor function the nodes in the entire graph are ordered
by this function. This may be depicted by:

I
1 b 2 Recalling the the nodes in a graph

°

I 1 I represent the basic blocks of a program
g and therefore contain instructions, some n-i i

i n 12 uses of the interval construct in global
. analysis will now be sketched. The

in_l J ~ h primary purpose of the skeletal procedure
! given to to show how some of the interval

• m L ~ ~ bn relationships may be applied to any one
of many types of analyses. The analysis

might typically involve looking for redundant instructions, determin-
ing variable definition and use relationships, etc.

Procedure F (Skeletal).
The use of intervals in global analysis is sketched by this

procedure:
I. Process each basic block in the program, collecting informa-

tion of global interest at the entry and exit. Set the order number,
k, to I.

2. For each k-order interval:
2.1 Proceed through the blocks in the interval in their interval

order. For each block the information previously collected (either
by step I or by the last iteration of step 2) is first modified to
reflect the effects of interval predecessors then promulgated to
interval successors.

2.2 After the completion of step 2.1, the information collected
at the exits of latching nodes (if there are any) must be promulgated.
This may require redoing step 2.1 after information on entry to the
interval head has been modified by the information on the latching
nodes.

Allen. CONTROL FLOW ANALYSIS

15-

SIGPLAN Notices 1970 July

As a result of step 2 information of global interest is left at
the interval head and at the exits.

3. The information collected by processing an interval is
associated with the node which represents it in the next higher
order graph. The order number, k, is increased by I and steps 2
and 3 repeated until the n-th order graph is reached. (We are
assuming it consists of a single node and no edges so does not
need processing.)

4. Set k to n-2 to initialize for steps 5 and 6 which will
propagate the information deposited with each node in each of the
graphs back to the basic blocks.

5. Associate with the head of each k-order interval the
information left at the node which corresponds to it in the k+l
order graph.

6. For each k-order interval proceed through the blocks in
interval order promulgating the information from the head of the
interval to each node in the interval.

7. Reduce k by one and repeat steps 5 and 6 until the first
order intervals have been processed.

8. Whatever global information has been carried through steps
i through 7 is now available at each block.

Consider the graph in Figure 4, redrawn here with some variable
definitions associated with some nodes.

r N,

,,, • ///-~B 3 ,.\

?

I " B /
, 4B3

, ()

Figure 5 Figure 6

Suppose the analysis is to determine which basic blocks each
definition can "reach". Assuming that step I of the procedure has
codified information about the variables defined in each block,
we will now very sketchily show how this information is propagated
by Procedure F. The first order intervals are processed. The
information associated with blocks i and 2 is not changed but by

Allen. CONTROL FLOW ANALYSIS

- 16 -

SIGPLAN Notices 1970 July

processing 1(3) we get, by step 2.1 followed by step 2.2, the
following information.

a. the definition of B and C in blocks 3 and 4 can reach any
block in the interval. This information can be left encoded with
each block.

b. the definitions can also reach the interval exit and can
therefore affect uses outside the interval. This is, therefore,
encoded at the exit.
Interval 1(7) is processed next and the fact that the definition
of A in 7 can affect uses outside the interval is recorded.
Figure 7 shows the information left with each node. (Subscripts have
been added to the variables to identify which node it was originally
in. Step 3 of the procedure now yields the graph in Figure 7.

~..j Ci=

"~!i BI=
/" B 3 =

A7=

A7,B3,C 4

AT,B3,C 4

A7,B3,C 4

Figure 7 Figure 8

Repeating step 2 for the second order intervals we find that all
definitions in the interval can reach every node in the interval.
This information is left encoded with each node as depicted in
Figure 8. Step 3 now yields Figure 9.

i!i ' Ci= ~/

Bi= Bi,C I

B3=

C4=

AT=

Figure 9 Figure i0

Processing the third order interval 13(1) = (i,ii) yields the fact
that B I and C I can reach node II. Figure I0 shows this.

We now apply steps 4, 5, 6 and 7 of the procedure. Starting
with the second order graph we associate the information left with
nodes I and Ii with intervals I~(I) and I~(2). Thus the fact that
B I and C I reach node ii means that they reach the interval 12(2).
This is shown in Figure ii.

Allen. CONTROL FLOW ANALYSIS

- 17 -

SIGPLAN Notices 1970 July

{i

B l,cl
(2; •

Z

I

Figure ii

A7,B3,C4,B1,Ci
Y2

!~A 7 ,B 3 ,C 4 ,B I ,C 1

t

Figure 12

Step 6 propagates, through the graph of Figure 8, the information that
BI and C I can reach the interval head to the other nodes in the inter-
val. (In our attempt to merely sketch the application of Procedure F
to a global analysis we have omitted some information which is
obviously vital at this point: whether or not a definition reaching
a node entry will be able to reach its exit(s). This information can
be trivially collected during the analysis. Had it been done we would
know that B I could not reach the exit of node 9.) The propagated
information is associated with each node in the interval as shown in
Figure 12. The first order graph is now processed. Step 5 associates
the node information of the second order graph with their corresponding
interval heads. Figure 13 shows this.

~ I A7,B3,C4,Bi,C 1
~,,

"~7,B3,C4,Bi ,Ci

I Z
1 /
"¢d A7,B3,C4,B1,C 1

"-. <7

d ,

!d k

{ "" ~k

~'... 'j L •

" /

:7

A7,B3,C4,Bi,C I

A7,B3,C4,Bi,C I

A7,B3,C4,C I

A7,B3,C4,C I

A7,B3,C4,Ci,B I

A7,B3,C4,Ci,B I

for both
4 and 5

Fisure 13 Figure 14

The information is propagated by step 6 through the graph of Fig. 6
and yields the result depicted in Fig. 14. We now know which nodes
can be reached by every definition. Although the details of this
example are beyond the scope of this paper it is worth commenting that
bit vector techniques exist for the example in which a series of
simple boolean operations on vectors codifying multiple definitions
are used to carry the information through the graph.

Allen. CONTROL FLOW ANALYSIS

18-

SIGPLAN Notices 1970 July

SUMMARY

The interval construct described in this paper has many proper-
ties which facilitate global analysis and which are of particular
interest in optimization. The partial ordering relationships
between nodes in an interval provide a natural processing order; the
ability to partition a graph into a hierarchy of intervals each of
which is partially ordered lets us propagate information rapidly
through the graph; the dominance relationships in a graph are easily
discovered; nests of strongly connected regions can be detected.
Although this paper has not shown how all of these constructs can be
found most of them should be apparent. The use of intervals in
optimization has only been hinted at; for a good explanation the
reader is referred to reference [3].

ACKNOWLEDGEMENTS

As stated in the introduction, the interval concept is due to
Dr. John Cocke who is also the major contributor of many of the
other ideas in this paper. Dr. J. T. Schwartz first formalized many
aspects of intervals. The author whishes to particularly thank both
of these people for not only their ideas but also for the continuing
encouragement.

REFERENCES

I. Allen, F. E., "Program Optimization," Annual Review in Automatic
Programmins, Vol. 5, Pergamon, New York, 1969.
2. Berge, C., The Theory of Graphs, Methuen & Co., Ltd., London,
1964.
3. Cocke, John, "Global Common Sub-expression Elimination,"
in these Proceedings.
4. Cocke, J. and Schwartz, J. T., "Programming Languages and their
Compilers," Preliminary Notes, Courant Institute of Mathematical
Sciences, New York Univ., N. Y., April 1970.
5. Prosser, R. T., "Applications of Boolean Matrices to the Analysis
of Flow Diagrams," Proc. Eastern Joint Computer Conf. Dec. 1959,
Spartan Books, N. Y., pp. 133-138.
6. Lowry, Edward S. and Medlock, C. W., "Object Code Optimization,"
CACM, Jan. 1969, pp. 13-22.
7. Earnest, C. P., Balke, K. G. and Anderson, J., "Analysis of
Graphs by Strict Ordering of Nodes" (unpublished).
8. Busam, Vincent A. and Englund, Donald E., "Optimization of
Expressions in Fortran," Comm. ACM., Dec. 1969, pp. 666-674.
9. Mendicino, Sam. F. et al., "The LPLTRAN Compiler," CACM,
Nov. 1969, pp. 747-755.
i0. Cocke, John and Miller, Raymond, "Some Analysis Techniques for
Optimizing Computer Programs," Proc. Second Intl. Conf. of Systems
Sciences, Hawaii, Jan. 1969.

Allen. CONTROL FLOW ANALYSIS

- 19 -

